Online and Home Chemistry Tuition

Online, Brighton and Worthing

https://www.chemistrytuition.net/

Key Concepts for A Level
Chemistry

Introduction to Chemistry Calculations Part 4

This resource may be downloaded for free at https://www.chemistrytuition.net/chemistry-calculations

$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

1 mole of O_{2} molecules
2 moles of H_{2} molecules

$$
\begin{aligned}
& 2 \text { moles of } \mathrm{H}_{2} \\
& \begin{array}{l}
1 \text { mole of } \mathrm{O}_{2} \\
\text { molecules }
\end{array} \\
& \begin{array}{l}
2 \text { moles of } \mathrm{H}_{2} \mathrm{O} \\
\text { molecules }
\end{array}
\end{aligned}
$$

We can work how much this would be in terms of mass, using

Mass = Moles x Molar Mass

$$
\begin{aligned}
& 2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \\
& \text { Mass }=2 \times 2 \\
& \text { Mass }=1 \times 32 \\
& \text { Mass }=2 \times 18 \\
& 4 \mathrm{~g} \\
& 32 \mathrm{~g} \\
& 36 \mathrm{~g}
\end{aligned}
$$

$2 \mathrm{H}_{2}+\mathrm{O}_{2}$
 $\rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

But we may not always be working with these masses, so how can we adapt this?
Example 1 - What mass of oxygen is needed to react with 8 grams of hydrogen?

Step 1 - Work out how many moles of hydrogen we have

Step 2 - Work out how many moles of oxygen you need to react with all the hydrogen

We have 4 moles of hydrogen:

So, from the equation, we need half the moles of oxygen $=2$ moles.

Step 3 - Now we now how many moles of oxygen we need, we can find the mass by

Mass $=$ Moles x Molar Mass

Mass of oxygen $=2 \times 32=\underline{\mathbf{6 4} \mathbf{g}}$

Example 2 - What mass of magnesium oxide would be produced from 16 g of oxygen in the reaction between magnesium and oxygen?

$$
2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}
$$

Example 2 - What mass of magnesium oxide would be produced from 18 g of oxygen in the reaction between magnesium and oxygen?

$$
2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}
$$

Step 1 - Work out how many moles of oxygen we have:

$$
\text { Moles }=\frac{\text { Mass }}{\text { Molar Mass }}=\frac{18}{32}=0.5625 \text { moles }
$$

Step 2 - Work out how many moles of magnesium oxide will be produced:

$$
2 \mathrm{Mg}
$$

0.5625 moles \qquad 1.125 moles

Step 3 - Find the mass of magnesium oxide:
Mass $=$ Moles \times Molar Mass
Mass $=1.125 \times 40.3=\underline{\mathbf{4 5} .3 \mathbf{g}}$

Example 3 - What mass of NH_{3} would be produced from 10 g of hydrogen in the reaction below:

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

Example 3 - What mass of NH_{3} would be produced from 10 g of

 hydrogen in the reaction below
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$

Step 1 - Work out how many moles of hydrogen we have:

$$
\text { Moles }=\frac{\text { Mass }}{\text { Molar Mass }}=\frac{10}{2}=5 \text { moles }
$$

Step 2 - Work out how many moles of ammonia would be formed:

$\mathrm{N}_{2}+$
 $3 \mathrm{H}_{2}$
 \rightarrow
 $2 \mathrm{NH}_{3}$

3.3 moles

Step 3 - Find the mass of NH_{3} :
Mass $=$ Moles \times Molar Mass
Mass $=3.3 \times 17=\underline{\mathbf{5 6} .67 \mathrm{~g}}$

Coming up ...some examples for you...

1) What mass of PbSO_{4} would be produced by 100 g of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$?
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \quad+\quad \mathrm{H}_{2} \mathrm{SO}_{4} \quad \rightarrow \quad \mathrm{PbSO}_{4}+\quad 2 \mathrm{HNO}_{3}$
2) What mass of KCl would be produced from $20 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$?
$\mathrm{K}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{KCl}+\mathrm{CO}_{2}+\quad \mathrm{H}_{2} \mathrm{O}$
3) What mass of NaCl would be produced from 0.71 g of chlorine gas?
$\mathrm{Cl}_{2}+6 \mathrm{NaOH} \rightarrow \quad 5 \mathrm{NaCl}+\mathrm{NaClO}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
4) What mass of NaOH would produce 15 g of NaCl ?
$6 \mathrm{NaOH}+3 \mathrm{Cl}_{2} \rightarrow \mathrm{NaClO}_{3}+5 \mathrm{NaCl}+3 \mathrm{H}_{2} \mathrm{O}$

Dr Simon Orchard

