

Key Concepts for A Level Chemistry

Introduction to Chemistry Calculations Part 4

This resource may be downloaded for free at

https://www.chemistrytuition.net/chemistry-calculations

$2H_2 + O_2 \rightarrow 2H_2O$

1 mole of O₂

molecules

 $x 6.02 \times 10^{23}$

2 moles of H₂ molecules

$2H_2 + O_2 \rightarrow 2H_2O$

2 moles of H₂ molecules

1 mole of O₂ molecules

2 moles of H₂O molecules

We can work how much this would be in terms of mass, using

Mass = Moles x Molar Mass

$$2H_2 + O_2 \rightarrow 2H_2O$$

 $Mass = 2 \times 2$

 $Mass = 1 \times 32$

 $Mass = 2 \times 18$

4 g

32 g

36 g

$$2H_2 + O_2 \rightarrow 2H_2O$$

But we may not always be working with these masses, so how can we adapt this?

Example 1 – What mass of oxygen is needed to react with 8 grams of hydrogen?

Step 1 – Work out how many moles of hydrogen we have

Moles =
$$\frac{Mass}{Molar Mass}$$
 = $\frac{8}{2}$ = 4 moles

Step 2 – Work out how many moles of oxygen you need to react with all the hydrogen

We have 4 moles of hydrogen:

 $x 6.02 \times 10^{23}$

So, from the equation, we need half the moles of oxygen = 2 moles.

 $x 6.02 \times 10^{23}$

Step 3 – Now we now how many moles of oxygen we need, we can find the mass by

Mass of oxygen =
$$2 \times 32 = 64 \text{ g}$$

Example 2 – What mass of magnesium oxide would be produced from 16 g of oxygen in the reaction between magnesium and oxygen?

ChemistryTuition.Ne

$$2Mg + O_2 \rightarrow 2MgO$$

Example 2 – What mass of magnesium oxide would be produced from 18 g of oxygen in the reaction between magnesium and oxygen?

$$2Mg + O_2 \rightarrow 2MgO$$

Step 1 – Work out how many moles of oxygen we have:

Moles =
$$\frac{Mass}{Molar Mass}$$
 = $\frac{18}{Molar Mass}$ = 0.5625 moles

Step 2 – Work out how many moles of magnesium oxide will be produced:

2Mg +
$$O_2$$
 + O_2 2MgO
 $1 \text{ mole of } O_2$ 2 moles of MgO
 0.5625 moles 1.125 moles

Step 3 – Find the mass of magnesium oxide:

Mass =
$$1.125 \times 40.3 = 45.3 g$$

Example 3 – What mass of NH₃ would be produced from 10 g of hydrogen in the reaction below:

$$N_2 + 3H_2 \rightarrow 2NH_3$$

Example 3 – What mass of NH₃ would be produced from 10 g of hydrogen in the reaction below

$$N_2 + 3H_2 \rightarrow 2NH_3$$

Step 1 – Work out how many moles of hydrogen we have:

Moles =
$$\frac{Mass}{Molar Mass}$$
 = $\frac{10}{moles}$ = 5 moles

Step 2 – Work out how many moles of ammonia would be formed:

$$N_2 + 3 H_2 \rightarrow 2 NH_3$$

Step 3 – Find the mass of NH₃:

Mass = Moles x Molar Mass

Mass = $3.3 \times 17 = 56.67 g$

Coming up ...some examples for you...

1) What mass of PbSO₄ would be produced by 100 g of Pb(NO₃)₂?

 $Pb(NO_3)_2 + H_2SO_4$

 \rightarrow PbSO₄ + 2HNO₃

2) What mass of KCl would be produced from 20 g K₂CO₃?

 K_2CO_3 + 2HCl \rightarrow 2KCl + CO_2 + H_2O

3) What mass of NaCl would be produced from 0.71g of chlorine gas?

 $Cl_2 + 6NaOH \rightarrow 5NaCl + NaClO_3 + 3H_2O$

4) What mass of NaOH would produce 15 g of NaCl?

6NaOH + $3Cl_2$ \rightarrow NaClO₃ + 5NaCl + $3H_2O$

Dr Simon Orchard