
Amino Acids, Amides and Chirality

Amino Acids

The general formula for an α -amino acid is RCH(NH₂)COOH, i.e. the acid and amino groups are bonded to the same C atom.

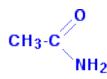
The acid group in an amino acid molecule can donate a proton to the amino group in the **same** molecule, forming an internal salt or **zwitterion**, i.e. amino acids are **ionic**. An amino acid exists as a zwitterion at a pH value called the isoelectric point.

Different R groups in α -amino acids may result in different isoelectric points. [Recall not necessary: glycine the isoelectric point is pH 6.07; for alanine, 6.11]

NH ₂	NH2		
CH2-COOF	H CH3-CH-COOH		
2-aminoethanoic	add 2-aminopropanoic add		
glycine	alanine		
Acid-base properties:			
Basic properties- α-amino acids will react with acids			
with H ⁺	HOOCCH₂NH₂ + H⁺ \longrightarrow HOOCCH₂NH₃⁺ Structure at	low pH	
with HCI	HOOCCH ₂ NH ₂ + HCI —> HOOCCH ₂ NH ₃ ⁺ CI		
Acidic properties- α-amino acids will react with alkalis			
with OH	HOOCCH ₂ NH ₂ + OH ⁻ > ⁻ OOCCH ₂ NH ₂ + H ₂ O Stru	cture at high pH	
with NaOH	HOOCCH ₂ NH ₂ + NaOH \longrightarrow Na ^{+ $-$} OOCCH ₂ NH ₂ + H ₂ O		

At low pH they have a positive charge and at high pH a negative charge.

Formation of esters

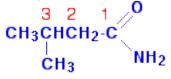

Note that the carboxylic acid group can form esters with alcohols. In the acidic conditions used (conc H_2SO_4), the amine group will be protonated.

 $NH_2-CH_2 - COOH + CH_3OH \implies ^+NH_3-CH_2 - COOCH_3 + H_2O$

Amides

Amides are derived from carboxylic acids. A carboxylic acid contains the -COOH group, and in an amide the -OH part of that group is replaced by an -NH₂ group.

The most commonly discussed amide is ethanamide, CH₃CONH₂

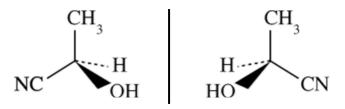

ethanamide

The three simplest amides are:

<u>HCONH₂</u>	<u>Methanamide</u>
<u>CH₃CONH₂</u>	<u>ethanamide</u>
CH ₃ CH ₂ CONH ₂	propanamide

Notice that in each case, the name is derived from the acid by replacing the "oic acid" ending by "amide".

If the chain was branched, the carbon in the $-CONH_2$ group counts as the number 1 carbon atom. For example:


3-methylbutanamide

Primary amides have two H atoms attached to the N atom Secondary amides have three H atoms attached to the N atom.

Optical Isomers

Optical isomers are non-superimposable mirror images about an organic chiral centre. A chiral centre is a carbon atom bonded to four different groups.

They are drawn to show 3D and are mirror images of each other, e.g.

All α-amino acids have a chiral centre (except for glycine, CH₂(NH₂)COOH).

Optical isomerism and E/Z isomerism (E/Z isomerism exists because of restricted rotation about a C=C double bond if each carbon atom is bonded to two different groups) are different types of stereoisomerism.