

Changing concentrations

Changing concentrations and $\mathrm{Kc} / \mathrm{Kp}$

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Changing concentrations and $\mathrm{Kc} / \mathrm{Kp}$

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

$$
\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\mathrm{So}_{38}}\right)^{2}}{\left(\mathrm{P}_{\mathrm{soz}_{28}}\right)^{2}\left(\mathrm{P}_{\mathrm{o}_{26}}\right)}
$$

Changing concentrations and $\mathrm{Kc} / \mathrm{Kp}$

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

temperature, this
figure does not
change

Changing concentrations and Kc/Kp

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Longrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

figure does not
change

Changing concentrations and Kc/Kp

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Longrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Changing concentrations and $\mathrm{Kc} / \mathrm{Kp}$

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Longrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Changing concentrations and $\mathrm{Kc} / \mathrm{Kp}$

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Changing concentrations and $\mathrm{Kc} / \mathrm{Kp}$

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$

Changing concentrations and $\mathrm{Kc} / \mathrm{Kp}$

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

Additional
$\mathrm{SO}_{2(\mathrm{~g})}$ added

This increases
PsO_{2} to 6 atm

Changing concentrations and $К с / К р$

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

This increases
$\mathrm{P}_{\mathrm{So}_{2}}$ to 6 atm

Changing concentrations and $К с / К р$

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

$$
\begin{aligned}
& \text { Additional } \\
& \mathrm{SO}_{2(\mathrm{~g})} \text { added }
\end{aligned} \quad \mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\left.\mathrm{sO}_{3(\mathrm{~g})}\right)^{2}}\right.}{\left(\mathrm{P}_{\left.\mathrm{so}_{2(\mathrm{~g})}\right)}\right)^{2}\left(\mathrm{P}_{\mathrm{O}_{2(\mathrm{~s})}}\right)}=\frac{(5)^{2}}{(3)^{2}(4)}
$$

This increases
$\mathrm{P}_{\mathrm{sO}_{2}}$ to 6 atm

$=\underset{\uparrow}{0.695 \mathrm{~atm}^{-1}}$
This cannot change

Changing concentrations and $К с / К р$

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$

$$
\begin{aligned}
& \text { Additional } \\
& \mathrm{SO}_{2(\mathrm{~g})} \text { added } \\
& \mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\mathrm{So}_{3 \mathrm{O}}}\right)^{2}}{\left(\mathrm{P}_{\mathrm{so}_{26}}\right)^{2}\left(\mathrm{P}_{\mathrm{o}_{2 \mathrm{E}}}\right)}=\frac{(5)^{2}}{(3)^{2}(4)}
\end{aligned}
$$

This increases
$\mathrm{P}_{\mathrm{So}_{2}}$ to 6 atm
$=\underset{\uparrow}{0.695 \mathrm{~atm}^{-1}}$
This cannot change
$(6)^{2}(4)$

$$
=0.1736
$$

Changing concentrations and $\mathrm{Kc} / \mathrm{Kp}$

The partial pressures of SO_{2} and O_{2} must decrease and the partial pressure of SO_{3} increase i.e. the equilibrium moves to the right.

Changing concentrations and $К с / К p$

$$
\begin{aligned}
2 \mathrm{SO}_{2}(\mathrm{~g}) & +\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \\
\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\mathrm{So}_{3(6)}}\right)^{2}}{\left(\mathrm{P}_{\mathrm{soz}_{2 \mathrm{E}}}\right)^{2}\left(\mathrm{Po}_{\left.\mathrm{o}_{2 \mathrm{E}}\right)}\right)} & =\frac{(5)^{2}}{(3)^{2}(4)}=0.695 \mathrm{~atm}^{-1} \quad \text { Original } \\
& =\frac{(\mathrm{A})^{2}}{(\mathrm{~B})^{2}(\mathrm{C})}=0.1736
\end{aligned}
$$

The partial pressures of SO_{2} and O_{2} must decrease and the partial pressure of SO_{3} increase i.e. the equilibrium moves to the right.

$$
\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\mathrm{so}_{36}}\right)^{2}}{\left(\mathrm{P}_{\mathrm{so}_{28}}\right)^{2}\left(\mathrm{Po}_{\mathrm{o}_{26}}\right)}=\frac{(5)^{2}}{(3)^{2}(4)}=0.695 \mathrm{~atm}^{-1} \quad \text { Original }
$$

New conditions - not at equilibrium
$(5)^{2}$
$(6)^{2}(4)$

Equilibrium re-established

$$
=\frac{(\mathrm{A})^{2}}{(4)^{2}(\mathrm{C})}
$$

$$
\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\mathrm{so}_{36}}\right)^{2}}{\left(\mathrm{P}_{\mathrm{soz}_{28}}\right)^{2}\left(\mathrm{Po}_{\mathrm{o}_{26}}\right)}=\frac{(5)^{2}}{(3)^{2}(4)}=0.695 \mathrm{~atm}^{-1} \quad \text { Original }
$$

New conditions - not at equilibrium
$(5)^{2}$
$(6)^{2}(4)$

Equilibrium re-established

$$
=\frac{(\mathrm{A})^{2}}{(4)^{2}(3)}
$$

$$
\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\mathrm{so}_{36}}\right)^{2}}{\left(\mathrm{P}_{\mathrm{soz}_{28}}\right)^{2}\left(\mathrm{Po}_{\left.\mathrm{z}_{26}\right)}\right)}=\frac{(5)^{2}}{(3)^{2}(4)}=0.695 \mathrm{~atm}^{-1} \quad \text { Original }
$$

New conditions - not at equilibrium
$(6)^{2}(4)$

Equilibrium re-established

$$
=\frac{(5.78)^{2}}{(4)^{2}(3)}
$$

$$
K_{p}=\frac{\left(\mathrm{P}_{\mathrm{so}_{36}}\right)^{2}}{\left(\mathrm{P}_{\mathrm{so}_{28}}\right)^{2}\left(\mathrm{Po}_{\mathrm{o}_{26}}\right)}=\frac{(5)^{2}}{(3)^{2}(4)}=0.695 \mathrm{~atm}^{-1} \quad \text { Original }
$$

New conditions - not at equilibrium
$(5)^{2}$
$(6)^{2}(4)$

Equilibrium re-established

$$
=\frac{(5.78)^{2}}{(4)^{2}(3)}=0.695 \mathrm{~atm}^{-1}
$$

Changing pressure

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{SO}_{3}(\mathrm{~g})$

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

Total pressure - 4 atm

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

Total pressure - 4 atm

$$
K_{p}=\frac{\left(\mathrm{P}_{\left.\mathrm{soO}_{38}\right)^{2}}\right.}{\left(\mathrm{P}_{\mathrm{sop}_{285}}\right)^{2}\left(\mathrm{PO}_{\mathrm{o}_{38}}\right)}
$$

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

Total pressure - 4 atm

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{SO}_{3}(\mathrm{~g})$

Total pressure - 4 atm

$$
\mathrm{K}_{\mathrm{p}}=\frac{\left(4 \mathrm{Y}_{\mathrm{So}_{\mathrm{o}_{85}}}\right)^{2}}{\left(4 \mathrm{Y}_{\mathrm{soz}_{8 k}}\right)^{2}\left(4 \mathrm{Y}_{\mathrm{o}_{2 \mathrm{k}}}\right)}
$$

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{SO}_{3}(\mathrm{~g})$

Total pressure - 4 atm

$$
\mathrm{K}_{\mathrm{p}}=\frac{16\left(\mathrm{Y}_{\mathrm{So}_{3(8)}}\right)^{2}}{16\left(\mathrm{Y}_{\mathrm{sop}_{2 \mathrm{E}}}\right)^{2} \times 4\left(\mathrm{Y}_{\mathrm{o}_{2 \xi}}\right)}
$$

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

Total pressure - 4 atm

$$
\mathrm{K}_{\mathrm{p}}=\frac{16\left(\mathrm{Y}_{\mathrm{so}_{38}(5)}\right)^{2}}{64\left[\left(\mathrm{Y}_{\mathrm{soz}_{28}}\right)^{2} \times\left(\mathrm{Y}_{\mathrm{o}_{26}}\right)\right]}
$$

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

Pressure increased to 6 atm

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{SO}_{3}(\mathrm{~g})$

Pressure increased to 6 atm - the system is no longer at equilibrium if the mole fractions remain the same.

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{SO}_{3}(\mathrm{~g})$

Pressure increased to 6 atm - the system is no longer at equilibrium if the mole fractions remain the same.

$$
\begin{aligned}
& \left(\mathrm{Y}_{\mathrm{SO}_{28}} \mathrm{x} 6\right)^{2} \\
& \left(\mathrm{Y}_{\text {ol }_{2 \in}} \mathrm{X} 6\right)^{2}\left(\mathrm{Y}_{\mathrm{o}_{2 \in)}} \times 6\right)
\end{aligned}
$$

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{SO}_{3}(\mathrm{~g})$

Pressure increased to 6 atm - the system is no longer at equilibrium if the mole fractions remain the same.

$$
\frac{36\left(\mathrm{Y}_{\mathrm{So}_{38} \mathrm{E}}\right)^{2}}{216\left[\left(\mathrm{Y}_{\mathrm{soz}_{2 \mathrm{E}}}\right)^{2} \times\left(\mathrm{Y}_{\mathrm{o}_{28}}\right)\right]}
$$

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Pressure increased to 6 atm - the system is no longer at equilibrium if the mole fractions remain the same.

$$
\begin{aligned}
& 36\left(\mathrm{Y}_{\mathrm{So}_{3 \times 1}}\right)^{2} \\
& 216\left[\left(Y_{\text {so }_{28}}\right)^{2} \times\left(\mathrm{Y}_{\left.\mathrm{o}_{28}\right)}\right)\right] \\
& =0.167 \times \text { Mole fraction } \\
& \text { expression }
\end{aligned}
$$

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

New conditions: $\quad 36\left(Y_{\text {So }_{3(1)}}\right)^{2}$
$216\left[\left(\mathrm{Y}_{\mathrm{so}_{218}}\right)^{2} \times\left(\mathrm{Y}_{\left.\mathrm{o}_{28}\right)}\right)\right] \quad$ expression
Consider the change in pressure:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Longrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

New conditions: $\quad 36\left(Y_{\text {So }_{2(18}}\right)^{2}$

Consider the change in pressure:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Longrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

New conditions: $\quad 36\left(Y_{\text {So }_{3(1)}}\right)^{2}$

Consider the change in pressure:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Longrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

At equilibrium: $\mathrm{K}_{\mathrm{p}}=\frac{16\left(\mathrm{Y}_{\mathrm{So}_{3(8)}}\right)^{2}}{64\left[\left(\mathrm{Y}_{\mathrm{soz}_{28}(8)}\right)^{2} \times\left(\mathrm{Y}_{\left.\mathrm{O}_{2(8)}\right)}\right)\right]}=\begin{array}{r}\text { expression }\end{array}$
New conditions: $\quad 36\left(Y_{\text {So }_{2(18}}\right)^{2}$

Consider the change in pressure:

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

The change in pressure has affected the reactants more than the products. Therefore in order to restore Kp and reach equilibrium again, the mole fractions of the reactants must decrease and the mole fraction of the product increase.

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

The equilibrium shifts to the right i.e. to side with the fewest number of gaseous moles

Changing temperature

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}-198.2 \mathrm{~kJ} / \mathrm{mol}$

Exothermic
 $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Longrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}-198.2 \mathrm{~kJ} / \mathrm{mol}$

Endothermic

 endothermic direction

$$
\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\mathrm{so}_{385}}\right)^{2}}{\left(\mathrm{P}_{\mathrm{so}_{26}(5)}\right)^{2}\left(\mathrm{P}_{\mathrm{o}_{25}}\right)}
$$

In this reaction the number of moles and partial pressures of SO_{2}

$$
\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\mathrm{sos}_{3}}\right)^{2}}{\left(\mathrm{P}_{\left.\mathrm{s}_{0_{4}(4)}\right)^{2}}\left(\mathrm{P}_{\mathrm{os}_{3}}\right)\right.}
$$

In this reaction the number of moles and partial pressures of SO_{2}

Kp decreases
 exothermic direction

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

$\Delta \mathrm{H}-198.2 \mathrm{~kJ} / \mathrm{mol}$

$$
\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\left.\mathrm{so}_{\mathrm{o}_{68}}\right)^{2}}\right.}{\left(\mathrm{P}_{\mathrm{so}_{28}}\right)^{2}\left(\mathrm{P}_{\mathrm{o}_{26}}\right)}
$$

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

$\Delta \mathrm{H}-198.2 \mathrm{~kJ} / \mathrm{mol}$ exothermic direction

$$
\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\left.\mathrm{so}_{\mathrm{o}_{68}}\right)^{2}}\right.}{\left(\mathrm{P}_{\mathrm{so}_{28}}\right)^{2}\left(\mathrm{P}_{\mathrm{o}_{26}}\right)}
$$

Kp increases

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

$\Delta \mathrm{H}-198.2 \mathrm{~kJ} / \mathrm{mol}$ exothermic direction

$$
\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\left.\mathrm{so}_{\mathrm{o}_{68}}\right)^{2}}\right.}{\left(\mathrm{P}_{\mathrm{so}_{28}}\right)^{2}\left(\mathrm{P}_{\mathrm{o}_{26}}\right)}
$$

Kp increases

Online Teaching and Learning Resources for Chemistry Students

ChemistryTuition.Net

