

Equilibrium Constant for Gaseous Reactions

Download slides at ChemistryTuition.Net

The Equilibrium Constant for Gaseous Reactions

For reactions involving gases, the equilibrium constant, K_p, is used. K_p is exactly that same as K_c except partial pressures of the gases are used instead of their concentrations in mol dm⁻³.

For reactions involving gases, the equilibrium constant, K_p , is used. K_p is exactly that same as K_c except partial pressures of the gases are used instead of their concentrations in mol dm⁻³.

In a mixture of gases, A + B + C, the mole fraction of each gas is

For reactions involving gases, the equilibrium constant, K_p , is used. K_p is exactly that same as K_c except partial pressures of the gases are used instead of their concentrations in mol dm⁻³.

In a mixture of gases, A + B + C, the mole fraction of each gas is

For reactions involving gases, the equilibrium constant, K_p , is used. K_p is exactly that same as K_c except partial pressures of the gases are used instead of their concentrations in mol dm⁻³.

In a mixture of gases, A + B + C, the mole fraction of each gas is

Number of moles of gas

Mole fraction =

Total number of moles of gas

For reactions involving gases, the equilibrium constant, K_p , is used. K_p is exactly that same as K_c except partial pressures of the gases are used instead of their concentrations in mol dm⁻³.

In a mixture of gases, A + B + C, the mole fraction of each gas is

Number of moles of gas

Mole fraction =

Total number of moles of gas

Number of moles of gas A

$$x_A =$$

Number of moles of A + B + C

Partial Pressure

The partial pressure of one of the gases in a mixture is the pressure which it would exert if it alone occupied the whole container.

Partial Pressure

The partial pressure of one of the gases in a mixture is the pressure which it would exert if it alone occupied the whole container.

Partial Pressure = Mole fraction x Total Pressure

Partial Pressure

The partial pressure of one of the gases in a mixture is the pressure which it would exert if it alone occupied the whole container.

Partial Pressure = Mole fraction x Total Pressure

 P_A = Mole fraction of A x Total Pressure

K_p in homogeneous equilibria –everything is in the gaseous phase

$$3H_{2(g)} + N_{2(g)} \Rightarrow 2NH_{3(g)}$$

$$K_{p} = \frac{(P_{NH_{3}})^{2}}{(P_{H_{2}})^{3} \chi(P_{N_{2}})}$$

K_p in heterogenous equilibria –solids and liquids are not included

$$CaCO_{3(s)} \Rightarrow CaO_{(s)} + CO_{2(g)}$$

ChemistryTuition.Net

Online Teaching and Learning Resources for Chemistry Students