A2 Physical Chemistry

Equilibrium Constant for Gaseous Reactions

Download slides at ChemistryTuition.Net

The Equilibrium Constant for Gaseous Reactions

For reactions involving gases, the equilibrium constant, K_{p}, is used. K_{p} is exactly that same as K_{c} except partial pressures of the gases are used instead of their concentrations in $\mathrm{mol} \mathrm{dm}^{-3}$.

Mole Fractions

For reactions involving gases, the equilibrium constant, K_{p}, is used. K_{p} is exactly that same as K_{c} except partial pressures of the gases are used instead of their concentrations in $\mathrm{mol} \mathrm{dm}^{-3}$.

In a mixture of gases, $\mathrm{A}+\mathrm{B}+\mathrm{C}$, the mole fraction of each gas is

Mole Fractions

For reactions involving gases, the equilibrium constant, K_{p}, is used. K_{p} is exactly that same as K_{c} except partial pressures of the gases are used instead of their concentrations in $\mathrm{mol} \mathrm{dm}^{-3}$.

In a mixture of gases, $\mathrm{A}+\mathrm{B}+\mathrm{C}$, the mole fraction of each gas is

Mole Fractions

For reactions involving gases, the equilibrium constant, K_{p}, is used. K_{p} is exactly that same as K_{c} except partial pressures of the gases are used instead of their concentrations in $\mathrm{mol} \mathrm{dm}^{-3}$.

In a mixture of gases, $\mathrm{A}+\mathrm{B}+\mathrm{C}$, the mole fraction of each gas is
Number of moles of gas
Mole fraction =
Total number of moles of gas

Mole Fractions

For reactions involving gases, the equilibrium constant, K_{p}, is used. K_{p} is exactly that same as K_{c} except partial pressures of the gases are used instead of their concentrations in $\mathrm{mol} \mathrm{dm}^{-3}$.

In a mixture of gases, $\mathrm{A}+\mathrm{B}+\mathrm{C}$, the mole fraction of each gas is
Number of moles of gas
Mole fraction $=\frac{\text { Total number of moles of gas }}{\text { Nu }}$
Number of moles of gas A

$$
x_{A}=\quad \text { Number of moles of } A+B+C
$$

Partial Pressure

The partial pressure of one of the gases in a mixture is the pressure which it would exert if it alone occupied the whole container.

Partial Pressure

The partial pressure of one of the gases in a mixture is the pressure which it would exert if it alone occupied the whole container.

Partial Pressure $=$ Mole fraction $\quad x \quad$ Total Pressure

Partial Pressure

The partial pressure of one of the gases in a mixture is the pressure which it would exert if it alone occupied the whole container.

$$
\begin{aligned}
\text { Partial Pressure } & =\text { Mole fraction } \\
& x
\end{aligned} \text { Total Pressure }
$$

K_{p} in homogeneous equilibria -everything is in the gaseous phase

$$
3 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{N}_{2(\mathrm{~g})} \Rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}
$$

$$
K_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\mathrm{NH}_{3}}\right)^{2}}{\left(\mathrm{P}_{\mathrm{H}_{2}}\right)^{3} \times\left(\mathrm{P}_{\mathrm{N}_{2}}\right)}
$$

K_{p} in heterogenous equilibria -solids and liquids are not included

$\mathrm{CaCO}_{3(\mathrm{~s})} \Rightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~s})}$

$$
K_{p}=P_{c o 0_{t 0}}
$$

