A2 Physical Chemistry

Indicators and Titration Curves

ChemistryTuition.Net

Indicators

Indicators change colour over a pH range. They are weak acids that have different colours as HIn and In⁻.

 $HIn \Rightarrow H^+ + In^-$

Indicators

Indicators change colour over a pH range. They are weak acids that have different colours as HIn and In⁻.

$$HIn \Rightarrow H^{+} + In^{-}$$

Colour in acidic conditions

Colour in alkaline conditions

The pH at which the indicator changes colour depends of its pK_a

When [HIn] = [In⁻], the colour would be a 1:1 mixture of HIn:In⁻

$HIn \Rightarrow H^+ + In^-$

$K_{ln} = \frac{[H^+][ln^-]}{[Hln]}$

At halfway through the colour change [HIn]=[In⁻]

 $K_{In} = [H^+] \qquad pK_{In} = pH$

Indicators don't change colour sharply at one particular pH. Instead, they change over a narrow range of pH.

Indicator	рК _{In}	pH range
Methyl orange	3.7	3.1 - 4.4
Phenolphthalein	9.3	8.2 - 10.0

Choosing An Indicator

- The equivalence point of a titration is where the two substances have been mixed in exactly equal proportions.
- An indicator must be used which changes colour as close as possible to that equivalence point.
- That varies from titration to titration.

Neutralisation

• Titration curves show how pH changes during a titration.

• An indicator can give a sharp end-point if there is a sudden pH change covering the pH at which the indicator changes colour.

• The following titration curves assume that the alkali (in burette) is being added to the acid (in conical flask).

• You merely need to reverse them if the question specifies the acid is being added to alkali.

Strong Acid – Strong Alkali

0.1 mol dm⁻³ NaOH_(aq) added to 0.1 mol dm⁻³ HCl_(aq)

Strong Acid – Weak Alkali

0.1 mol dm⁻³ NH_{3(aq)} added to 0.1 mol dm⁻³ HCl_(aq)

Weak Acid – Strong Alkali

0.1 mol dm⁻³ NaOH_(aq) added to 0.1 mol dm⁻³ CH₃COOH_(aq)

Weak Acid – Weak Alkali

0.1 mol dm⁻³ $NH_{3(aq)}$ added to 0.1 mol dm⁻³ $CH_3COOH_{(aq)}$

Online Teaching and Learning Resources for Chemistry Students

ChemistryTuition.Net