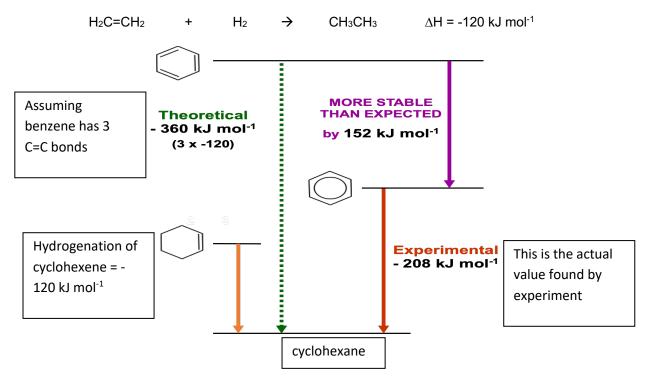

Aromatic compounds

Structure of benzene

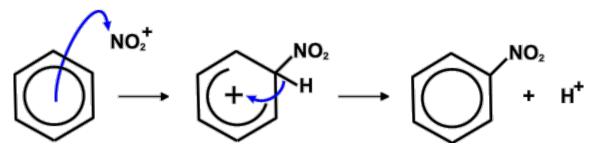

Benzene has the molecular formula C_6H_6 . Kekule suggested a planar, cyclic ring with alternating double and single bonds.

However,

- 1. The Kekule formula shows single and double bonds, but benzene does not decolourise Br₂. Its most common reaction is substitution not addition.
- 2. Double bonds are shorter than single bonds. Kekule implies a distorted structure. In fact benzene is a regular planar hexagon with angles 120°, and all C-C bonds the same length, intermediate between double and single bonds.
- 3. Energetics calculations and experiments indicate that benzene is more stable than expected. Enthalpy of hydrogenation of ethene:

We now know the hexagonal molecule is **planar**, with six C-C bonds of equal length. Overlap of **p**-**orbitals** leads to formation of **pi-bonds** that are spread over all six C atoms. The electrons are said to be '**delocalised**', forming a ring of electrons above and below the C nuclei.

Electrophilic Substitution of arenes


1. Nitration uses a mixture of conc nitric acid and conc sulphuric acid at 50 - 60 degrees Celsius.

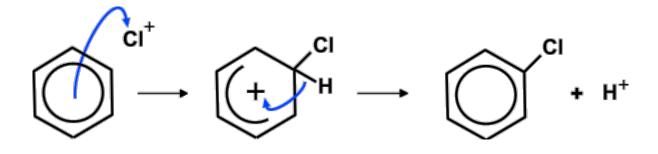
Benzene + nitric acid
$$\rightarrow$$
 nitrobenzene + water

Mechanism: the electrophile is the nitryl cation, **NO**₂⁺, produced in the nitrating mixture:

 $H_2SO_4 + HNO_3 \rightarrow NO_2^+ + HSO_4^- + H_2O$

The NO_2^+ is attracted to the delocalised pi-electrons in benzene. An unstable intermediate is formed without full delocalisation. Delocalisation is restored when a proton is lost.

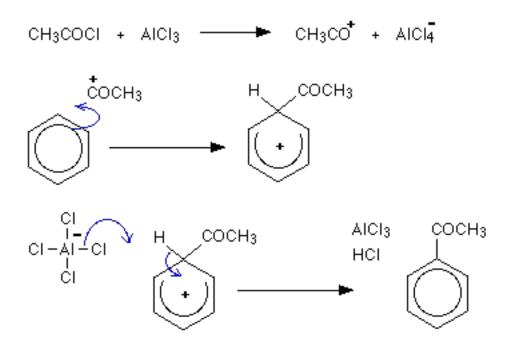
Finally the sulphuric acid catalyst is reformed : $H^+ + HSO_4^- \rightarrow H_2SO_4$


2. Electrophilic substitution with a halogen in the presence of a halogen carrier (Halogen carriers include iron, iron halides and aluminium halides).

FeCl₃ catalyst benzene + chlorine → chlorobenzene + hydrogen chloride C_6H_6 + Cl₂ → C_6H_5Cl + HCl

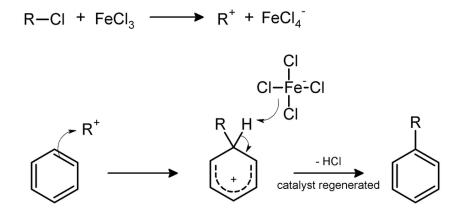
Mechanism:

When chlorine is bubbled through benzene in the presence of iron, iron (III) chloride is generated, which then reacts with more Cl_2 to form the electrophile Cl^+ .


 Cl_2 + $FeCl_3 \rightarrow FeCl_4$ + Cl^+

3. Friedel-Crafts acylation reactions

a) Benzene + ethanoyl chloride → methyl phenyl ketone + hydrogen chloride


Aluminium chloride, AlCl₃, is an electron deficient molecule. It is covalently bonded, but because the aluminium is only forming 3 bonds, and has no lone pairs, there are only 6 electrons around the aluminium atom rather than 8. It takes a chlorine (as a chloride ion) from the ethanoyl chloride, and forms a co-ordinate (dative covalent) bond with it

NOTE: AlCl₃ is a catalyst.

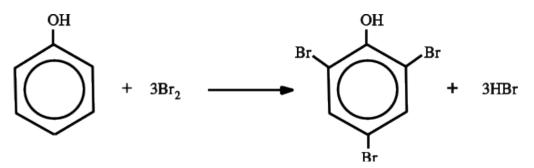
4. Benzene +chloromethane → methyl benzene+ hydrogen chloride

AlCl₃ is a catalyst.

Reactivity of benzene:

Benzene reacts less readily than cyclohexene with electrophiles like bromine. The six delocalised electrons in benzene are delocalised over six bonds. However, alkenes have a higher π electron density to attract electrophiles more readily because the two π electrons are localised over one bond.

Phenols

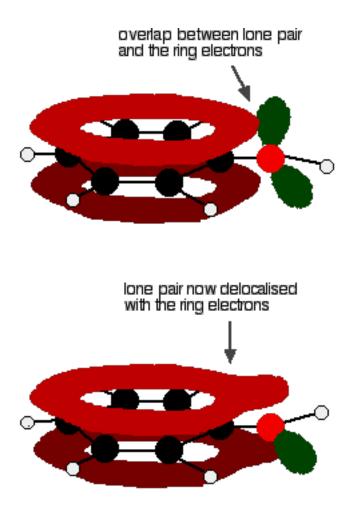

Phenol is a weak acid, forming salts with bases and with sodium:

phenol + sodium hydroxide -> sodium phenoxide + water						
C ₆ H₅OH + NaOH			\rightarrow	C₀H₅O⁻Na⁺	+ H ₂ O	
phenol + sodium -> sodium phenoxide + hydrogen (vigorous)						FIZZING
C ₆ H₅OH	+ Na	→	C₀H₅O⁻Na⁺	+	½ H ₂	OBSERVED

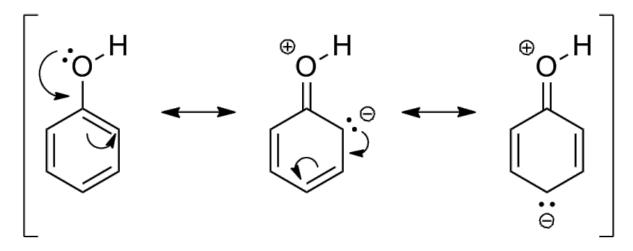
Sodium phenoxide is ionic and water soluble

Phenol does NOT react with metal carbonates.

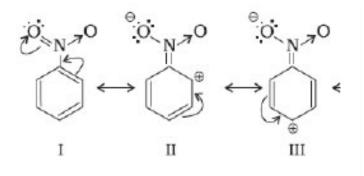
1. **Electrophilic Substitution with bromine water** A white ppt of 2,4,6-tribromophenol is produced and the bromine is decolourised. This is a test for phenols.


This reaction occurs more readily than with benzene as the OH group "activates" the benzene ring. A lone pair in a p orbital on the oxygen atom overlaps with the delocalised π electrons, increasing the electron density in the ring so it is more susceptible to electrophilic attack. **No catalyst is needed**.

2. Phenol will also react with dilute nitric acid to form 2-nitrophenol.


Phenols are used in the production of plastics, antiseptics, disinfectants and resins for paints.

Directing Groups


Groups such as OH and NH_2 when attached to a benzene ring are known as 2, 4 directing groups. This is because they donate the lone pair on the O or N atom into the benzene ring. This increases the electron density in the 2 and 4 positions, hence electrophiles will attack these carbons. In phenol:

The diagrams below are resonance structures and show why electron density is concentrated on the 2 and 4 positions.

Conversely, electron withdrawing groups such as NO_2 direct incoming electrophiles to the 3 position.

This is because the three position is less affected by the electron-withdrawing group.