

Introduction to Chemistry Calculations Moles in Solution

These slides may be downloaded at <u>https://www.chemistrytuition.net/</u>

So far, we have been able to find the number of moles in solids and gases.

How can we deal with substances dissolved in water?

For example, I have two solutions of copper sulphate and I take 20 cm³ from each one.

How many moles of copper sulphate I have taken from each?

Concentration of Solutions

When a substance is dissolved in water, we refer to its concentration as

the number of moles dissolved in 1000 cm³

However instead of saying 1000 cm³ all the time we use the units decimetre cubed (dm³)

 $1000 \text{ cm}^3 = 1 \text{ dm}^3$

So, this becomes number of moles dissolved in 1 dm³

Units are **moles per dm³** or **mol/dm³**

Concentration = in mol/dm³

Number of moles dissolved

Volume in dm³

Before using this equation, we need to:

- Convert the mass of copper sulphate into moles
- Convert cm³ into dm³

Example 1 - 15 g of copper sulphate (CuSO₄) in 220 cm³ of water.

Molar mass of $CuSO_4 = 63.5 + 32.1 + (4 \times 16) = 159.6$

Example 2 -10 g of copper sulphate (CuSO₄) in 100 cm³ of water

Molar mass of $CuSO_4 = 63.5 + 32.1 + (4 \times 16) = 159.6$

Volume =
$$100 \text{ cm}^3 = \frac{100}{1000} \text{ dm}^3 = 0.100 \text{ dm}^3$$

Concentration in mol/dm³ = Number of moles dissolved Volume in dm³ = $\frac{0.0627}{0.100} = \frac{0.627 \text{ mol/dm}^3}{0.100}$

9.2 grams of cobalt chloride $(CoCl_2)$ was dissolved in 490 cm³ of water.

Find the concentration in mol/dm³.

9.2 grams of cobalt chloride (CoCl₂) was dissolved in 490 cm³ of water.

Find the concentration in mol/dm³.

Moles of CoCl₂ Mass Molar mass

Concentration in mol/dm³

Number of moles dissolved

Volume in dm³

9.2 grams of cobalt chloride (CoCl₂) was dissolved in 490 cm³ of water. Find the concentration in mol/dm³.

Molar mass of CoCl₂ = 58.9 + (2 x 35.5) = 129.9

Calculate the volume required to obtain 0.0500 moles of NaOH from 0.100 mol/dm³ solution.

Calculate the volume of required to obtain 0.0500 moles of NaOH from 0.100 mol/dm³ solution

Calculate the volume in cm³ required to obtain 0.0500 moles of NaOH from 0.100 mol dm⁻³ solution.

Volume in $dm^3 = Concentration X$ Number of moles dissolved

Volume in dm³ = 0.100 X 0.0500 = 0.00500 dm^3

Volume in cm³ = Volume in dm³ X 1000

Volume in cm³ = 0.00500 X 1000 = **5.00 cm³**

Professional 1-1 Chemistry Tuition

www.ChemistryTuition.Net

Online Brighton Worthing

Dr Simon Orchard