A2 Physical Chemistry

Calculating the pH of Strong Acids

Download slides and other resources at ChemistryTuition.Net

Strong Acids

Strong acids are completely dissociated (broken down) into ions, e.g. hydrochloric and sulphuric acids when added to water.

Both hydrochloric and sulphuric acids are strong acids.
$\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}_{(\mathrm{aq})}$
$\mathrm{H}_{2} \mathrm{SO}_{4(\text { aq })} \rightarrow 2 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{2-}{ }_{(\text {aq })}$

Number of Protons Released

Monoprotic acid = acid that releases one \mathbf{H}^{+}ion per molecule $\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{HNO}_{3}$

Diprotic acid = acid that releases two \mathbf{H}^{+}ions per molecule
$\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HOOC}-\mathrm{COOH}$

Triprotic acid = acid that releases three \mathbf{H}^{+}ions per molecule
$\mathrm{H}_{3} \mathrm{PO}_{4}$

The pH Scale $\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]$

The log scale allows a large range of $\left[\mathrm{H}^{+}\right]$to be represented easily.

$\mathbf{p H}$	$\left[\mathbf{H}^{+}\right]$
0	1
1	0.1
2	0.01
3	0.001
6	0.0001
6	0.00001
6	0.000001
7	0.0000001
8	0.00000001
9	0.000000001
10	0.000000001
11	0.00000000001
12	0.000000000001
13	0.0000000000001
14	0.00000000000001

Strong Acids - pH calculations 1

 What is the pH of $0.20 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}_{(\mathrm{aq)}}$?$\left[\mathrm{H}^{+}\right]=0.20 \mathrm{~mol} \mathrm{dm}^{-3}$
$\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]$
$\mathrm{pH}=-\log _{10}(0.2)$
$\mathrm{pH}=0.70$

Strong Acids - pH calculations 2

What is the concentration of a solution of $\mathrm{HNO}_{3(\mathrm{aq})}$ with a $\mathrm{pH}=1.10$?
$\left[\mathrm{H}^{+}\right]=10^{-1.10}$
$\left[\mathrm{H}^{+}\right]=7.94 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{HNO}_{3}\right]=7.94 \times 10^{-2} \mathrm{~mol} \mathrm{dm}{ }^{-3}$

Strong Acids - pH calculations 3

What mass of $\mathrm{H}_{3} \mathrm{PO}_{4}$ is required to make up $250 \mathrm{~cm}^{3}$ solution of pH 2.35 ?
$\left[\mathrm{H}^{+}\right]=10^{-0.35}$
$\left[\mathrm{H}^{+}\right]=0.447 \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=0.149 \mathrm{~mol} \mathrm{dm}^{-3}$
Mols of $\mathrm{H}_{3} \mathrm{PO}_{4}$ in $250 \mathrm{~cm}^{3}=0.149 \times 0.250=3.72 \times 10^{-2} \mathrm{~mol}$
Mass of $\mathrm{H}_{3} \mathrm{PO}_{4}=3.72 \times 10^{-2} \times 98=3.65 \mathrm{~g}$

Strong Acids - pH calculations 4

Calculate the pH of the solution formed when $100 \mathrm{~cm}^{3}$ of water is added to $50 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HNO}_{3}$.
$\left[\mathrm{H}^{+}\right]$in original solution $=0.100$
$\left[\mathrm{H}^{+}\right]$in diluted solution $=0.100 \times \frac{\text { old volume }}{\text { new volume }}$

Strong Acids - pH calculations 4

Calculate the pH of the solution formed when $100 \mathrm{~cm}^{3}$ of water is added to $50 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HNO}_{3}$.
$\left[\mathrm{H}^{+}\right]$in original solution $=0.100$

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right] \text {in diluted solution }=0.100 \times \frac{50}{150}=0.0333} \\
& \mathrm{pH}=-\log 0.0333 \\
& \mathrm{pH}=1.47
\end{aligned}
$$

Strong Acids - pH calculations 5

Calculate the pH of the solution formed when $250 \mathrm{~cm}^{3}$ of $0.300 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{H}_{2} \mathrm{SO}_{4}$ is made up to $1000 \mathrm{~cm}^{3}$ solution with water.
$\left[\mathrm{H}^{+}\right]$in original solution $=2 \times 0.300=0.600$
$\left[\mathrm{H}^{+}\right]$in diluted solution $=0.600 \times$ old volume new volume

Strong Acids - pH calculations 5

Calculate the pH of the solution formed when $250 \mathrm{~cm}^{3}$ of $0.300 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{H}_{2} \mathrm{SO}_{4}$ is made up to $1000 \mathrm{~cm}^{3}$ solution with water.
$\left[\mathrm{H}^{+}\right]$in original solution $=2 \times 0.300=0.600$
$\left[\mathrm{H}^{+}\right]$in diluted solution $=0.600 \times \frac{250}{1000}=0.150$
$\mathrm{pH}=-\log 0.150$
$\mathrm{pH}=0.82$

Ionic Product of Water

In pure water, a tiny proportion of water molecules are dissociated. $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$
$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}$
$\left[\mathrm{H}_{2} \mathrm{O}\right.$] is so much larger than $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$ it is effectively a constant number.
$\mathrm{K}_{\mathrm{c}}\left[\mathrm{H}_{2} \mathrm{O}\right]=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$

Ionic Product of Water

$\mathrm{K}_{\mathrm{c}}\left[\mathrm{H}_{2} \mathrm{O}\right]=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
This is also a constant

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

pH of Pure Water

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \quad \text { In pure water }\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right] \\
& \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]^{2}
\end{aligned}
$$

$$
\text { At } 298 \mathrm{~K}, \mathrm{~K}_{\mathrm{w}}=1.00 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}
$$

$$
1.00 \times 10^{-14}=\left[\mathrm{H}^{+}\right]^{2}
$$

$$
\left[\mathrm{H}^{+}\right]=1.00 \times 10^{-7}
$$

$$
\mathrm{pH}=-\log _{10}\left(1.00 \times 10^{-7}\right)
$$

pH of Pure Water

$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} \quad \Delta \mathrm{H}=$ endothermic

As the temperature is increased, the equilibrium shifts towards the products.

Therefore, $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$both increase.
K_{w} increases and pH decreases
However the water is still neutral as $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$

Online Teaching and Learning Resources for Chemistry Students

ChemistryTuition.Net

