

Calculating the pH of Strong Acids

Download slides and other resources at ChemistryTuition.Net

Strong Acids

Strong acids are completely dissociated (broken down) into ions, e.g. hydrochloric and sulphuric acids when added to water.

Both hydrochloric and sulphuric acids are strong acids.

$$HCl_{(aq)} \rightarrow H^+_{(aq)} + Cl^-_{(aq)}$$

$$H_2SO_{4(aq)} \rightarrow 2H^+_{(aq)} + SO_4^{2-}_{(aq)}$$

Number of Protons Released

Monoprotic acid = acid that releases one H⁺ ion per molecule

HCl, CH₃COOH, HNO₃

Diprotic acid = acid that releases two H⁺ ions per molecule

H₂SO₄, HOOC-COOH

Triprotic acid = acid that releases three H⁺ ions per molecule

The pH Scale

 $pH = -log_{10}[H^+]$

The log scale allows a large range of [H⁺] to be represented easily.

[H⁺] 0.1 0.01 0.001 0.0001 0.00001 0.000001 0.0000001 0.00000001 0.000000001 0.0000000001 0.00000000001 0.000000000001 0.00000000000000 0.000000000000001

What is the pH of 0.20 mol dm⁻³ HCl_(aq)?

```
[H^+] = 0.20 \text{ mol dm}^{-3}
```

```
pH = -log_{10}[H^+]
```

 $pH = -log_{10} (0.2)$

pH = 0.70

What is the concentration of a solution of $HNO_{3(aq)}$ with a pH = 1.10?

 $[H^+] = 10^{-1.10}$

```
[H^+] = 7.94 \times 10^{-2} \text{ mol dm}^{-3}
```

 $[HNO_3] = 7.94 \times 10^{-2} \text{ mol dm}^{-3}$

What mass of H_3PO_4 is required to make up 250 cm³ solution of pH 2.35?

 $[H^+] = 10^{-0.35}$

 $[H^+] = 0.447 \text{ mol dm}^{-3}$

 $[H_3PO_4] = 0.149 \text{ mol dm}^{-3}$

Mols of H_3PO_4 in 250 cm³ = 0.149 x 0.250 = 3.72 x 10⁻² mol Mass of H_3PO_4 = 3.72 x 10⁻² x 98 = 3.65 g

Calculate the pH of the solution formed when 100 cm³ of water is added to 50 cm³ of 0.100 mol dm⁻³ HNO₃.

[H⁺] in original solution = 0.100

[H⁺] in diluted solution = 0.100 x <u>old volume</u> new volume

Calculate the pH of the solution formed when 100 cm³ of water is added to 50 cm³ of 0.100 mol dm⁻³ HNO₃.

[H⁺] in original solution = 0.100

pH = -log 0.0333

pH = 1.47

Calculate the pH of the solution formed when 250 cm³ of 0.300 mol dm⁻³ H_2SO_4 is made up to 1000 cm³ solution with water.

 $[H^+]$ in original solution = 2 x 0.300 = 0.600

[H⁺] in diluted solution = 0.600 x <u>old volume</u> new volume

Calculate the pH of the solution formed when 250 cm³ of 0.300 mol dm⁻³ H_2SO_4 is made up to 1000 cm³ solution with water.

[H⁺] in original solution = 2 x 0.300 = 0.600

[H⁺] in diluted solution = $0.600 \times \frac{250}{1000} = 0.150$

pH = -log 0.150

pH = 0.82

Ionic Product of Water

In pure water, a tiny proportion of water molecules are dissociated.

$H_2O \rightleftharpoons H^+ + OH^-$

[H₂O] is so much larger than [H⁺] and [OH⁻] it is effectively a constant number.

 $K_{c}[H_{2}O] = [H^{+}][OH^{-}]$

Ionic Product of Water

pH of Pure Water

In pure water $[H^+] = [OH^-]$ $K_{w} = [H^{+}][OH^{-}]$

 $K_{w} = [H^{+}]^{2}$

At 298 K, $K_w = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$

 $1.00 \times 10^{-14} = [H^+]^2$

 $[H^+] = 1.00 \times 10^{-7}$

 $pH = -log_{10} (1.00 \times 10^{-7})$

pH = 7.00

pH of Pure Water

 $H_2O \rightleftharpoons H^+ + OH^ \Delta H = endothermic$

As the temperature is increased, the equilibrium shifts towards the products.

Therefore, [H⁺] and [OH⁻] both increase.

K_w increases and pH decreases

However the water is still neutral as $[H^+] = [OH^-]$

Online Teaching and Learning Resources for Chemistry Students

ChemistryTuition.Net