### **Extension Material** A2 Physical Chemistry

# Why Equilibrium Constants change with temperature

Download slides and other resources at ChemistryTuition.Net

#### **Arrhenius Equation**





If  $T_2$  is greater than  $T_1$ 



If  $T_2$  is greater than  $T_1$ 



This expression becomes negative

If  $T_2$  is greater than  $T_1$ 

R

Therefore, due to the negative sign here, the right-hand side becomes positive

This expression becomes negative

If  $T_2$  is greater than  $T_1$ 

R

Therefore, due to the negative sign here, the right-hand side becomes positive

This expression becomes negative

Resulting in  $k_2 > k_{1.}$ 

If  $T_2$  is greater than  $T_1$ 

R

Therefore, due to the negative sign here, the right-hand side becomes positive

This expression becomes negative

Resulting in  $k_2 > k_{1.}$ 

Increasing the temperature increases the rate constant.

From

## $ln k = ln A - \frac{E_a}{RT}$



## $ln k = ln A - \frac{E_a}{RT}$

The effect of temperature on k is proportional to the activation energy.



### $\ln \mathbf{k} = \ln \mathbf{A} - \frac{\mathbf{E}_{a}}{\mathbf{RT}}$

The effect of temperature on k is proportional to the activation energy.



# $\ln \mathbf{k} = \ln \mathbf{A} - \frac{\mathbf{E}_{a}}{\mathbf{RT}}$

The effect of temperature on k is proportional to the activation energy.

As activation energy increases, the effect of changing temperature increases.



## $ln k = ln A - \frac{E_a}{RT}$

The effect of temperature on k is proportional to the activation energy.

As activation energy increases, the effect of changing temperature increases.

One direction of a reaction is always exothermic and the other direction is endothermic.

The endothermic direction has the larger activation energy.

### $2 \text{ SO}_2(g) + O_2(g) \Rightarrow 2 \text{ SO}_3(g)$ $\Delta H$ -198.2 kJ/mol



### $2 \text{ SO}_2(g) + O_2(g) \Rightarrow 2 \text{ SO}_3(g)$ $\Delta H$ -198.2 kJ/mol



### $2 \text{ SO}_2(g) + O_2(g) \Rightarrow 2 \text{ SO}_3(g)$ $\Delta H$ -198.2 kJ/mol



$$2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \Rightarrow 2 \operatorname{SO}_3(g)$$
  $\Delta$ H - 198.2 kJ/mol



When temperature increases, both rates (forward and reverse) <u>increase</u> but the rate of the <u>endothermic reaction increases more</u>.

Equilibrium shifts in the endothermic direction.



When temperature increases, both rates (forward and reverse) <u>increase</u> but the rate of the <u>endothermic reaction increases more</u>.

Equilibrium shifts in the endothermic direction.



When temperature decreases, both rates (forward and reverse) <u>decrease</u> but the rate of the <u>endothermic reaction decreases more</u>!

**Equilbrium shifts in the exothermic direction.** 



Raising the temperature increases  $K_c/K_p$  for an endothermic reaction and lowers  $K_c/K_p$  for an exothermic reaction

### Online Teaching and Learning Resources for Chemistry Students

ChemistryTuition.Net