www.chemistrytuition.net

Chemistry Tuition

Online, Brighton and Worthing

Key Concepts for A Level
Chemistry

Introduction to Chemistry
 Calculations 1

This resource may be downloaded for free at
https://www.chemistrytuition.net/ - GCSE to A level Resources

Introduction

The mass of an individual atom is very small and it is much more convenient to measure atomic masses as relative masses.

Mass of 0.5

Dr Simon Orchard

Online Tuition
Home Tuition
Brighton/Worthing

Relative
 Mass = 1
 Relative
 Mass $=2$
 Relative
 Mass $=3$

Relative
Mass = 1

10 g

Relative
Mass $=2$

20 g

Relative
Mass $=3$

Dr Simon Orchard
www.chemistrytuition.net

We use a method called relative atomic mass to measure the mass of atoms.

The mass of a single atom on a scale on which the mass of an atom of carbon-12 has a mass of 12 atomic mass units.

The relative atomic mass does not have units.

6

Carbon
= 12

24

For molecules and compounds we use Relative Molecular Mass is which is

Home Tuition

（1）	（2）											（3）	（4）	（5）	（6）	（7）	（0）
1			Key atomic number Symbolname relative atomic mass														18
$\underset{\substack{\mathbf{H} \\ \text { hydrogen } \\ 1.0}}{\mathbf{H}}$	2											13	14	15	16	17	$\begin{gathered} 2 \\ \mathrm{He} \\ \text { helium } \\ 4.0 \end{gathered}$
$\begin{gathered} 3 \\ \mathbf{L i} \\ \text { lithium } \\ 6.9 \end{gathered}$	$\begin{gathered} 4 \\ \text { Be } \\ \text { beryllium } \\ 9.0 \\ \hline \end{gathered}$											$\begin{gathered} 5 \\ \mathbf{B} \\ \text { boron } \\ 10.8 \end{gathered}$	$\begin{gathered} 6 \\ \mathbf{C} \\ \text { carbon } \\ 12.0 \end{gathered}$	$\begin{gathered} 7 \\ \mathbf{N} \\ \text { nitrogen } \\ 14.0 \end{gathered}$	$\begin{gathered} 8 \\ \mathbf{0} \\ \text { oxygen } \\ 16.0 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ \text { fuorine } \\ 19.0 \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ \text { neon } \\ 20.2 \end{gathered}$
$\begin{gathered} 11 \\ \mathrm{Na} \\ \text { sodium } \\ 23.0 \\ \hline \end{gathered}$	$\mathbf{1 2}$ $\mathbf{M g}$ magnesium 24.3	3	4	5	6	7	8	9	10	11	12	13 $\mathbf{A l}$ aluminium 27.0	$\begin{gathered} \hline 14 \\ \mathbf{S i} \\ \text { silicon } \\ 28.1 \end{gathered}$	14.0 \mathbf{P} phosphorus 31.0	$\begin{gathered} \hline 16 \\ \mathbf{S} \\ \text { sulfur } \\ 32.1 \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ \mathbf{C l} \\ \text { chlorine } \\ 35.5 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ \text { argon } \\ 39.9 \\ \hline \end{gathered}$
$\begin{gathered} 19 \\ \mathbf{K} \\ \text { potassium } \\ 39.1 \end{gathered}$	$\begin{gathered} 20 \\ \mathbf{C a} \\ \text { calcium } \\ 40.1 \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ \text { Sc } \\ \text { scandium } \\ 45.0 \\ \hline \end{gathered}$	$\begin{gathered} 22 \\ \mathrm{Ti} \\ \text { titanium } \\ 47.9 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ \text { vanadium } \\ 50.9 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{C r} \\ \text { chromium } \\ 52.0 \end{gathered}$	25 $\mathbf{M n}$ manganese 54.9	$\begin{gathered} \hline 26 \\ \text { Fe } \\ \text { iron } \\ 55.8 \\ \hline \end{gathered}$	$\begin{gathered} 27 \\ \text { Co } \\ \text { cobalt } \\ 58.9 \\ \hline \end{gathered}$	$\begin{array}{r} \hline 28 \\ \mathbf{N i} \\ \text { nickel } \\ 58.7 \\ \hline \end{array}$	$\begin{gathered} 29 \\ \mathbf{C u} \\ \text { copper } \\ 63.5 \\ \hline \end{gathered}$	$\begin{gathered} 30 \\ \text { Zn } \\ \text { zinc } \\ 65.4 \end{gathered}$	31 Ga gallium 69.7	$\begin{gathered} 32 \\ \mathbf{G e} \\ \text { germanium } \\ 72.6 \end{gathered}$	$\begin{gathered} 33 \\ \begin{array}{c} \text { As } \\ \text { arsenic } \\ 74.9 \\ \hline \end{array} ⿳ ⺈ ⿴ 囗 十 一 ⿱ 䒑 土 \end{gathered}$	$\begin{gathered} 34 \\ \text { Se } \\ \text { selenium } \\ 79.0 \end{gathered}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ \text { bromine } \\ 79.9 \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ \text { krypton } \\ 83.8 \end{gathered}$
39 \mathbf{R} $\mathbf{R b}$ rubidium 85.5	38 $\mathbf{S r}$ strontum 87.6	$\begin{gathered} \hline 39 \\ \mathbf{Y} \\ \text { yytrium } \\ 88.9 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ \text { zirconium } \\ 91.2 \end{gathered}$	$\begin{gathered} 41 \\ \mathbf{N b} \\ \text { niobium } \\ 92.9 \end{gathered}$	42 $\mathbf{M o}$ molybdenum 95.9	$\begin{gathered} \hline 43 \\ \text { Tc } \\ \text { technetium } \end{gathered}$	44 $\mathbf{R u}$ ruthenium 101.1	45 $\mathbf{R h}$ rhodium 102.9	46 Pd palladium 106.4	$\begin{gathered} \hline 47 \\ \mathbf{A g} \\ \text { siver } \\ 107.9 \end{gathered}$	$\begin{gathered} 48 \\ \text { Cd } \\ \text { cadmum } \\ 112.4 \end{gathered}$	$\begin{gathered} \hline 49 \\ \text { In } \\ \text { indium } \\ 114.8 \\ \hline \end{gathered}$	50 Sn tin 118.7	$\begin{gathered} 51 \\ \mathbf{S b} \\ \text { antimony } \\ 121.8 \end{gathered}$	$\begin{gathered} 52 \\ \text { Te } \\ \text { tellurium } \\ 127.6 \end{gathered}$	$\begin{gathered} 53 \\ \mathbf{I} \\ \text { iodine } \\ 126.9 \end{gathered}$	54 $\mathbf{X e}$ xenon 131.3
55 Cs caesium 132.9	56 Ba barium 137.3	57－71 lanthanoids	$\begin{gathered} \hline \mathbf{c} \\ \hline \begin{array}{c} \text { nafnium } \\ \text { nf } \\ 178.5 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \hline 73 \\ \mathbf{T a} \\ \text { tantalum } \\ 180.9 \\ \hline \end{gathered}$	$\begin{gathered} \hline 74 \\ \mathbf{W} \\ \text { tungsten } \\ 183.8 \end{gathered}$	$\begin{gathered} \hline 75 \\ \text { Re } \\ \text { rhenium } \\ 186.2 \end{gathered}$	$\begin{gathered} \hline 76 \\ \text { Os } \\ \text { osmium } \\ 190.2 \end{gathered}$	$\begin{gathered} \hline 77 \\ \text { Ir } \\ \text { indium } \\ 192.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 78 \\ \text { Pt } \\ \text { platinum } \\ 195.1 \end{gathered}$	$\begin{gathered} \hline 79 \\ \mathbf{A u} \\ \text { gold } \\ 197.0 \end{gathered}$	$\begin{gathered} 80 \\ \mathbf{H g} \\ \text { mercury } \\ 200.6 \end{gathered}$	81 $\mathbf{T} l$ thallium 204.4	$\begin{gathered} \hline 82 \\ \text { Pb } \\ \text { lead } \\ 207.2 \\ \hline \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ \text { bismuth } \\ 209.0 \end{gathered}$	$\begin{gathered} 84 \\ \text { Po } \\ \text { polonium } \end{gathered}$	$\begin{gathered} 85 \\ \text { At } \\ \text { astatine } \end{gathered}$	$\begin{aligned} & \hline 86 \\ & \mathbf{R n} \\ & \text { radon } \end{aligned}$
$\begin{aligned} & 87 \\ & \text { francium } \end{aligned}$	$\begin{gathered} 88 \\ \mathbf{R a} \\ \text { radium } \end{gathered}$	89-103 actinoids	$\begin{array}{\|c\|} \hline 104 \\ \mathbf{R f} \\ \text { rutherordium } \end{array}$	$\begin{gathered} 105 \\ \text { Db } \\ \text { dubnium } \end{gathered}$	$\begin{gathered} 106 \\ \mathbf{S g} \\ \text { seaborgium } \end{gathered}$	$\begin{gathered} 107 \\ \text { Bh } \\ \text { bohrium } \end{gathered}$	$\begin{gathered} 108 \\ \text { Hs } \\ \text { hassium } \end{gathered}$	$\begin{gathered} 109 \\ \mathbf{M t} \\ \text { meitnerium } \end{gathered}$	$\begin{gathered} \hline 110 \\ \text { Ds } \\ \text { damstadtium } \end{gathered}$	$\begin{array}{\|c\|} \hline 111 \\ \mathbf{R g} \\ \text { roentgenium } \end{array}$	$\begin{gathered} 112 \\ \text { Cn } \\ \text { copernicium } \end{gathered}$		$\begin{gathered} 114 \\ \text { Fl } \begin{array}{c} \text { fleovium } \end{array} \end{gathered}$		$\begin{gathered} 116 \\ \text { Lv } \\ \text { livermorium } \end{gathered}$		

Dr Simon Orchard

Online Tuition and
Home Tuition

Working out Relative Molecular Masses

$\mathrm{H}_{2} \mathrm{O}$	$(2 \times 1)+16$	$=$	18
		$=$	
CO_{2}	$12+(2 \times 16)$	$=$	44
	$14+3$	$=$	17
NH_{3}			
	$(2 \times 12)+5+16+1$	$=$	46
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$			
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	$40+(2 \times 14)+(6 \times 16)$	$=$	164
$\mathrm{Ca}(\mathrm{OH})_{2}$	$40+(2 \times 16)+(2 \times 1)$	$=$	74

The Mole

The mole is the amount of substance, which contains the same number of particles (atoms, ions, molecules, formulae or electrons) as there are carbon atoms in 12 g of carbon -12

Dr Simon Orchard

This number is known as the Avogadro constant, L, and is equal to 6.02×10^{23}

The molar mass of a substance is the mass, in grams, of one mole

What does this mean in practice?

The relative atomic mass and relative molecular mass tells us how much of a substance to weigh out on grams to obtain 1 mole of it.
'The Otter' = Number of particles in 10 g of B

The Mole

```
12 grams of
    carbon-12
    6.02 x 1023
        carbon
        atoms
```


Dr Simon Orchard

Home Tuition
Brighton/Worthing

Number of
 Mass in grams moles of atoms
 Relative Atomic Mass

For example, if you have 16 g of phosphorus, this is

Number of moles of atoms	$=\frac{\text { Mass in grams }}{\text { Relative Atomic Mass }}$
	$=\frac{16}{31}=0.52$ moles

Mass in grams

number of moles $=$ Relative Molecular Mass

Dr Simon Orchard

	Relative Molecular Mass				
3.90 g of NaNO_{3}	85	3.90/85	$=$	0.0459	mo
0.111 g of CaCl_{2}	111	0.111/111	$=$	0.001	
41.0 g of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	164	41/164	$=$	0.25	
13.76 g of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	132	13.76/132	$=$	0.104	mols
10.7 g of KIO_{3}	214	10.7/214	$=$	0.05	mols
100 g of NaClO	74.5	100/74.5	$=$	1.34	mols

Mass in grams $=$ number of moles

X Relative Molecular Mass

	Relative Molecular Mass				
2 mols of NaNO_{3}	85	2×85	$=$	170	g
0.25 mols of CaCl_{2}	111	0.25×111	$=$	27.75	g
2.95 mols of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	164	2.95×164	$=$	483.8	g
	132				
0.27 mols of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}$		0.27×132	$=$	35.64	g
	214				
2.1 mols of KIO_{3}		74.5	0.135×74.5	$=$	10.1
0.135 mols of NaClO				g	

Dr Simon Orchard

Online Tuition and
Home Tuition
Brighton/Worthing

