

Key Concepts for A Level Chemistry

Introduction to Chemistry Calculations 1

This resource may be downloaded for free at <u>https://www.chemistrytuition.net/</u> - GCSE to A level Resources

Introduction

The mass of an individual atom is very small and it is much more convenient to measure atomic masses as *relative* masses.

We use a method called **relative atomic mass** to measure the mass of atoms.

The mass of a single atom on a scale on which the mass of an atom of carbon-12 has a mass of 12 atomic mass units.

The *relative* atomic mass does not have units.

For molecules and compounds we use Relative Molecular Mass is which is calculated by adding together the relative atomic masses of the atoms in the chemical formulae.

(1)	(2)					_						(3)	(4)	(5)	(6)	(7)	(0)
1 1 H ^{hydrogen} 1.0 2			Key atomic number Symbol name relative atomic mass									13	14	15	16	17	18 2 He helium 4.0
3 Li lithium 6.9 11 Na sodium 23.0	4 Be beryllium 9.0 12 Mg magnesium 24.3	3	4	5	6	7	8	9	10	11	12	5 B boron 10.8 13 A1 aluminium 27.0	6 C carbon 12.0 14 Si silicon 28.1	7 N nitrogen 14.0 15 P phosphorus 31.0	8 O xyygen 16.0 16 S sulfur 32.1	9 F fluorine 19.0 17 Cl chlorine 35.5	10 Ne neon 20.2 18 Ar argon 39.9
19 K 39.1	24.3 20 Ca calcium 40.1	21 Sc scandium 45.0	22 Ti titanium 47.9	23 V vanadium 50.9	24 Cr chromium 52.0	25 Mn manganese 54.9	26 Fe iron 55.8	27 Co cobalt 58.9	28 Ni ^{nickel} 58.7	29 Cu ^{copper} 63.5	30 Zn 2inc 65.4	31 Ga gallium 69.7	32 Ge germanium 72.6	33 As arsenic 74.9	34 Se selenium 79.0	35.3 Br bromine 79.9	36 Kr ^{krypton} 83.8
37 Rb rubidium 85.5	38 Sr strontium 87.6	39 Y yttrium 88.9	40 Zr 21.2	41 Nb niobium 92.9	42 Mo molybdenum 95.9	43 Tc technetium	44 Ru ruthenium 101.1	45 Rh rhodium 102.9	46 Pd palladium 106.4	47 Ag silver 107.9	48 Cd cadmium 112.4	49 In ^{indium} 114.8	50 Sn 118.7	51 Sb antimony 121.8	52 Te 127.6	53 I 126.9	54 Xe xenon 131.3
55 Cs caesium 132.9	56 Ba ^{barium} 137.3	57–71 Ianthanoids	72 Hf ^{hafnium} 178.5	73 Ta tantalum 180.9	74 W ^{tungsten} 183.8	75 Re ^{rhenium} 186.2	76 Os ^{osmium} 190.2	77 Ir ^{iridium} 192.2	78 Pt platinum 195.1	79 Au _{gold} 197.0	80 Hg mercury 200.6	81 T l thallium 204.4	82 Pb lead 207.2	83 Bi bismuth 209.0	84 Po polonium	85 At astatine	86 Rn _{radon}
87 Fr francium	88 Ra radium	89–103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh _{bohrium}	108 Hs hassium	109 Mt meitnerium	110 Ds darmstadtium	111 Rg roentgenium	112 Cn copernicium		114 F <i>I</i> flerovium		116 Lv livermorium		

Dr Simon Orchard

Online Tuition and Home Tuition Brighton/Worthing

Working out Relative Molecular Masses

(2 x 1) + 16	=	18
12 + (2 x 16)	=	44
11 + 2	_	17
T+ L Q		17
(2 x 12) + 5 + 16 + 1	=	46
40 + (2 x 14) + (6 x 16)	=	164
(10 + (2 + 16) + (2 + 1))		74
	$12 + (2 \times 16)$ 14 + 3 $(2 \times 12) + 5 + 16 + 1$	$12 + (2 \times 16) = $ $14 + 3 = $ $(2 \times 12) + 5 + 16 + 1 = $ $40 + (2 \times 14) + (6 \times 16) = $

Online Tuition and Home Tuition Brighton/Worthing

The mole is the amount of substance, which contains the same number of particles (atoms, ions, molecules, formulae or electrons) as there are carbon atoms in 12 g of carbon -12

This **number** is known as the *Avogadro constant, L*, and is equal to 6.02×10^{23}

The molar mass of a substance is the mass, in grams, of one mole

What does this mean in practice?

The relative atomic mass and relative molecular mass tells us how much of a substance to weigh out on grams to obtain 1 mole of it.

Online Tuition and Home Tuition Brighton/Worthing

Dr Simon Orchard

Number of <u></u>moles of atoms

Mass in grams

Relative Atomic Mass

For example, if you have 16 g of phosphorus, this is

Mass in grams number of moles **Relative Molecular Mass Dr Simon Orchard Relative Molecular Mass** 3.90 g of NaNO₃ 85 3.90/85 0.0459 mols = $0.111 \text{ g of } CaCl_2$ 111 0.111/111 0.001 mols = www.chemistrytuition.net 41.0 g of $Ca(NO_3)_2$ 41/164 0.25 164 mols = 13.76 g of (NH₄)₂SO₄ 132 13.76/132 0.104 mols = **Online Tuition** 10.7 g of KIO_3 214 10.7/214 0.05 and mols = **Home Tuition Brighton/Worthing** 100 g of NaClO 74.5 100/74.5 1.34 mols =

Mass in grams $= \frac{n}{m}$

number of moles

Relative Molecular Mass 2 mols of NaNO₃ 85 2 x 85 170 g = 0.25 mols of CaCl₂ 111 0.25 x 111 27.75 g = 2.95 mols of $Ca(NO_3)_2$ 2.95 x 164 483.8 164 = g 0.27 mols of $(NH_4)_2SO_4$ 0.27 x 132 132 35.64 g = 2.1 mols of KIO_3 214 2.1 x 214 449.4 g = 0.135 mols of NaClO 74.5 0.135 x 74.5 10.1 g =

Dr Simon Orchard

Online Tuition and Home Tuition Brighton/Worthing

www.chemistrytuition.net

