Buffer

Calculations

ChemistryTuition.Net

Acidic Buffers

$$
\begin{aligned}
& \mathrm{HA}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{A}_{(\mathrm{aq})}^{-} \\
& K_{a}=\frac{\left[H^{+}{ }^{+0}\right]\left[A_{A_{e x}}\right]}{\left[H A_{\text {eap }}\right]}
\end{aligned}
$$

Basic Buffers

$$
\begin{aligned}
& \mathrm{B}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{HB}_{(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-} \\
& \left.\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{HB}^{+}{ }_{(\mathrm{aq})}\right]\left[\mathrm{OH}_{(\mathrm{aq})}\right]}{[\mathrm{Baq}]}\right]
\end{aligned}
$$

$$
\left[\mathrm{OH}_{(a q)}^{-}\right]=K_{\mathrm{b}} \times \frac{\left[\mathrm{B}_{(\mathrm{aqq}}\right]}{\left[\mathrm{HB}_{(a \mathrm{aq})}^{+}\right]}
$$

A buffer solution was made by adding 2.05 g of sodium ethanoate to $0.500 \mathrm{dm}^{3}$ of $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid.

Calculate the pH of this solution $\left(\mathrm{K}_{\mathrm{a}}\right.$ for ethanoic acid $\left.=1.74 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)$.

A buffer solution was made by adding 2.05 g of sodium ethanoate to $0.500 \mathrm{dm}^{3}$ of $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid. Calculate the pH of this solution (K_{a} for ethanoic acid $=1.74 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$).

$$
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=\mathrm{K}_{\mathrm{a}} \times \frac{\left[\mathrm{HA}_{(\mathrm{aq})}\right]}{\left[\mathrm{A}_{(\mathrm{aq})}^{-}\right]}
$$

$\begin{aligned} & \text { Moles of sodium } \\ & \text { ethanoate }\end{aligned}=\frac{2.05}{82}=0.025$ moles . $=0$.

$$
\begin{aligned}
& \text { Conc of sodium } \\
& \text { ethanoate }
\end{aligned}=\frac{0.025}{0.500}=0.050 \mathrm{~mol} \mathrm{dm}^{-3}
$$

$$
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=\mathrm{K}_{\mathrm{a}} \times \frac{\left[\mathrm{HA}_{(\mathrm{aq})}\right]}{\left[\mathrm{A}_{(\mathrm{aq)}}^{-}\right]}
$$

A buffer solution was made by adding 2.05 g of sodium ethanoate to $0.500 \mathrm{dm}^{3}$ of $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid. Calculate the pH of this solution (K_{a} for ethanoic acid $=1.74 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$).

$$
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=\mathrm{K}_{\mathrm{a}} \mathrm{x} \quad\left[\mathrm{HA}_{(\mathrm{aq})}\right]
$$

$$
\begin{aligned}
& \text { Moles of sodium } \\
& \text { ethanoate }
\end{aligned}=\frac{2.05}{82}=0.025 \text { moles }
$$

$$
\begin{aligned}
& \text { Conc of sodium } \\
& \text { ethanoate }
\end{aligned}=\frac{0.025}{0.500}=0.050 \mathrm{~mol} \mathrm{dm}^{-3}
$$

$$
\left[\mathrm{H}^{+}(\mathrm{aq})\right]=1.74 \times 10^{-5} \times \frac{0.01}{0.050}
$$

A buffer solution was made by adding 2.05 g of sodium ethanoate to $0.500 \mathrm{dm}^{3}$ of $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid. Calculate the pH of this solution (K_{a} for ethanoic acid $=1.74 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$).

$$
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=\mathrm{K}_{\mathrm{a}} \mathrm{X}\left[\mathrm{HA}_{(\mathrm{aq})}\right]
$$

$$
\begin{aligned}
& \text { Moles of sodium } \\
& \text { ethanoate }
\end{aligned}=\frac{2.05}{82}=0.025 \text { moles }
$$

$$
\begin{aligned}
& \text { Conc of sodium } \\
& \text { ethanoate }
\end{aligned}=\frac{0.025}{0.500}=0.050 \mathrm{~mol} \mathrm{dm}^{-3}
$$

$$
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=3.48 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}
$$

A buffer solution was made by adding 2.05 g of sodium ethanoate to $0.500 \mathrm{dm}^{3}$ of $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid. Calculate the pH of this solution (K_{a} for ethanoic acid $=1.74 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$).

$$
\left[\mathrm{H}^{+}(\mathrm{aq)}]=\mathrm{K}_{\mathrm{a}} \mathrm{X} \quad\left[\mathrm{HA}_{(\mathrm{aq})}\right]\right.
$$

$$
\begin{aligned}
& \text { Moles of sodium } \\
& \text { ethanoate }
\end{aligned}=\frac{2.05}{82}=0.025 \text { moles }
$$

$$
\begin{aligned}
& \text { Conc of sodium } \\
& \text { ethanoate }
\end{aligned}=\frac{0.025}{0.500}=0.050 \mathrm{~mol} \mathrm{dm}^{-3}
$$

$$
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=3.48 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}
$$

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& \mathrm{pH}=-\log \left(3.48 \times 10^{-6}\right) \\
& \mathrm{pH}=5.46
\end{aligned}
$$

A buffer solution was made by mixing $25.0 \mathrm{~cm}^{3}$ of 1.00 $\mathrm{mol} \mathrm{dm}{ }^{-3}$ ethanoic acid with $25 \mathrm{~cm}^{3}$ of $0.400 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide.
$\left(\mathrm{K}_{\mathrm{a}}\right.$ for ethanoic acid $=1.74 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$). Find the pH of this buffer.

A buffer solution was made by mixing $25.0 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid with $25 \mathrm{~cm}^{3}$ of $0.400 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide. (K_{a} for ethanoic acid $=1.74 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$). Find the pH of this buffer.

Moles of
Ethanoic acid $=0.025 \times 1.00=0.025$ moles
$\begin{aligned} & \text { Moles of } \\ & \mathrm{NaOH}\end{aligned}=0.025 \times 0.400=0.010$ moles

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}
$$

Moles of ethanoic acid remaining $=0.025-0.010=0.015$ moles

$$
\text { Conc of ethanoic acid }=\frac{0.015}{0.050}=0.300 \mathrm{~mol} \mathrm{dm}^{-3}
$$

Moles of sodium
ethanoate formed
:---
ethanoate

A buffer solution was made by mixing $25.0 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid with $25 \mathrm{~cm}^{3}$ of $0.400 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide. (K_{a} for ethanoic acid $=1.74 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$). Find the pH of this buffer.

Conc of ethanoic acid $=\quad 0.300 \mathrm{~mol} \mathrm{dm}^{-3}$

Conc of sodium
ethanoate

$\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=\mathrm{K}_{\mathrm{a}} \mathrm{x} \frac{\left[\mathrm{HA}_{(\mathrm{aq})}\right]}{\left[\mathrm{A}_{(\mathrm{aq})}^{-}\right]}$

$$
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=1.7410^{-5} \times \frac{0.300}{0.200}
$$

A buffer solution was made by mixing $25.0 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid with $25 \mathrm{~cm}^{3}$ of $0.400 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide. (K_{a} for ethanoic acid $=1.74 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$). Find the pH of this buffer.

Conc of ethanoic acid $=0.300 \mathrm{~mol} \mathrm{dm}^{-3}$

$$
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=\mathrm{K}_{\mathrm{a}} \mathrm{x} \frac{\left[\mathrm{HA}_{(\mathrm{aq})}\right]}{\left[\mathrm{A}_{(\mathrm{aq)}}^{-}\right]}
$$

$$
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=2.61 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}
$$

```
Conc of sodium
ethanoate \(\begin{aligned} & \text { Conc of sodium } \\ & \text { ethanoate }\end{aligned}=0.200 \mathrm{~mol} \mathrm{dm}^{-3}\)
\[
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
\]
\[
\mathrm{pH}=-\log \left(2.61 \times 10^{-5}\right)
\]
\[
\mathrm{pH}=4.58
\]

A buffer solution contains 0.20 mole of \(\mathrm{NH}_{3}\) and 0.60 mole \(\mathrm{NH}_{4} \mathrm{Cl}\) in \(750 \mathrm{~cm}^{3}\). Calculate the pH of this solution ( \(\mathrm{K}_{\mathrm{b}}\) for ammonia \(=\) \(1.8 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\) ).

A buffer solution contains 0.20 mole of \(\mathrm{NH}_{3}\) and \(0.60 \mathrm{~mole}_{\mathrm{NH}_{4} \mathrm{Cl}}\) in \(750 \mathrm{~cm}^{3}\). Calculate the pH of this solution ( \(\mathrm{K}_{\mathrm{b}}\) for ammonia \(=1.8 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\) ).
\[
\begin{aligned}
& {\left[\mathrm{NH}_{3(\mathrm{aq})}\right]=\frac{0.20}{0.750}=0.267 \mathrm{~mol} \mathrm{dm}^{-3} \quad\left[\mathrm{NH}_{4} \mathrm{Cl}\right]=\frac{0.60}{0.750}=0.800 \mathrm{~mol} \mathrm{dm}^{-3}} \\
& \left.\left[\mathrm{OH}_{(\mathrm{aq})}\right]=\mathrm{K}_{\mathrm{b}} \times \frac{\left[\mathrm{B}_{(\mathrm{aq})}\right]}{\left[\mathrm{HB}^{+}{ }_{(\mathrm{aqq}}\right]}\right]
\end{aligned}
\]

A buffer solution contains 0.20 mole of \(\mathrm{NH}_{3}\) and \(0.60 \mathrm{~mole}_{\mathrm{NH}_{4} \mathrm{Cl}}\) in \(750 \mathrm{~cm}^{3}\). Calculate the pH of this solution ( \(\mathrm{K}_{\mathrm{b}}\) for ammonia \(=1.8 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\) ).
\[
\left[\mathrm{NH}_{3(\text { aq) }}\right]=\frac{0.20}{0.750}=0.267 \mathrm{~mol} \mathrm{dm}^{-3} \quad\left[\mathrm{NH}_{4} \mathrm{Cl}\right]=\frac{0.60}{0.750}=0.800 \mathrm{~mol} \mathrm{dm}^{-3}
\]
\[
\left[\mathrm{OH}_{(\mathrm{aq})}^{-}\right]=1.8 \times 10^{-5} \times \frac{0.267}{0.800} \quad\left[\mathrm{OH}_{(\mathrm{aq})}^{-}\right]=6.01 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}
\]
\[
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \quad 1 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left(6.01 \times 10^{-6}\right)
\]
\[
\left[\mathrm{H}^{+}\right]=1.66 \times 10^{-9} \mathrm{~mol} \mathrm{dm}^{-3}
\]
\[
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \quad \mathrm{pH}=-\log \left(1.66 \times 10^{-9}\right) \quad \mathrm{pH}=8.78
\]
\[
\left[\mathrm{H}^{+}{ }_{\text {(aq) })}\right]=10^{-\mathrm{pH}} \quad\left[\mathrm{H}^{+}{ }_{\text {(aq) }}\right]=10^{-7.40} \quad\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=3.98 \times 10^{-8}
\]

Carbonic acid, \(\mathrm{H}_{2} \mathrm{CO}_{3}\), is a weak Brønsted-Lowry acid formed when carbon dioxide dissolves in water. Healthy blood at a pH of 7.40 has a hydrogencarbonate : carbonic acid ratio of 10.5 : 1 .

A patient is admitted to hospital. The patient's blood pH is measured as 7.20. Calculate the hydrogencarbonate : carbonic acid ratio in the patient's blood.
\[
\left[\mathrm{H}^{+}(\mathrm{aq)}]=\mathrm{K}_{\mathrm{a}} \times \frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq)}}\right]}{\left[\mathrm{HCO}_{3^{-(\mathrm{aq})}}\right]}\right.
\]
\[
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=10^{-\mathrm{pH}} \quad\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=10^{-7.40} \quad\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=3.98 \times 10^{-8}
\]

Carbonic acid, \(\mathrm{H}_{2} \mathrm{CO}_{3}\), is a weak Brønsted-Lowry acid formed when carbon dioxide dissolves in water. Healthy blood at a pH of 7.40 has a hydrogencarbonate : carbonic acid ratio of 10.5 : 1 .

A patient is admitted to hospital. The patient's blood pH is measured as 7.20. Calculate the hydrogencarbonate : carbonic acid ratio in the patient's blood.
\(3.98 \times 10^{-8}=K_{a} \times \quad 1\)
10.5
\(\mathrm{K}_{\mathrm{a}}=4.18 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}\)
\(\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=10^{-\mathrm{pH}} \quad\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=10^{-7.20}\)
\(\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=6.31 \times 10^{-8}\)
\(\left.\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=\mathrm{K}_{\mathrm{a}} \times \frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})}\right]}{\left[\mathrm{HCO}_{3}^{-}(\mathrm{qq)})\right.}\right]\)
\[
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=10^{-\mathrm{pH}} \quad\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=10^{-7.40} \quad\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=3.98 \times 10^{-8}
\]

Carbonic acid, \(\mathrm{H}_{2} \mathrm{CO}_{3}\), is a weak Brønsted-Lowry acid formed when carbon dioxide dissolves in water. Healthy blood at a pH of 7.40 has a hydrogencarbonate : carbonic acid ratio of 10.5 : 1.

A patient is admitted to hospital. The patient's blood pH is measured as 7.20. Calculate the hydrogencarbonate : carbonic acid ratio in the patient's blood.
\(3.98 \times 10^{-8}=K_{a} \times \quad 1\) 10.5
\[
\mathrm{K}_{\mathrm{a}}=4.18 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}
\]
\[
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=10^{-\mathrm{pH}} \quad\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=10^{-7.20}
\]
\[
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=6.31 \times 10^{-8}
\]
\[
\left.6.31 \times 10^{-8}=4.18 \times 10^{-7} \times \frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})}\right]}{\left[\mathrm{HCO}_{3}^{-}(\mathrm{aq})\right.}\right]
\]
\[
\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})}\right]}{\left[\mathrm{HCO}_{3}^{-}(\mathrm{aq)})\right.}=\frac{6.31 \times 10^{-8}}{4.18 \times 10^{-7}} \quad \frac{\left[\mathrm{HCO}_{3}^{-}(\mathrm{aq})\right.}{\left[\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})}\right]}=\frac{4.18 \times 10^{-7}}{6.31 \times 10^{-8}}
\]
\[
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=10^{-\mathrm{pH}} \quad\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=10^{-7.40} \quad\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=3.98 \times 10^{-8}
\]

Carbonic acid, \(\mathrm{H}_{2} \mathrm{CO}_{3}\), is a weak Brønsted-Lowry acid formed when carbon dioxide dissolves in water. Healthy blood at a pH of 7.40 has a hydrogencarbonate : carbonic acid ratio of 10.5 : 1.

A patient is admitted to hospital. The patient's blood pH is measured as 7.20. Calculate the hydrogencarbonate : carbonic acid ratio in the patient's blood.
\(3.98 \times 10^{-8}=K_{a} \times \quad 1\) 10.5
\[
\mathrm{K}_{\mathrm{a}}=4.18 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}
\]
\[
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=10^{-\mathrm{pH}} \quad\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=10^{-7.20}
\]
\[
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=6.31 \times 10^{-8}
\]
\[
6.31 \times 10^{-8}=4.18 \times 10^{-7} \times \frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})}\right]}{\left[\mathrm{HCO}_{3(\mathrm{aq})}^{-}\right]}
\]
\[
\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq)}}\right]}{\left[\mathrm{HCO}_{3}^{-}{ }_{(\mathrm{aq})}\right]}=\frac{6.31 \times 10^{-8}}{4.18 \times 10^{-7}} \quad \frac{\left[\mathrm{HCO}_{3(\mathrm{aq)}}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq)}}\right]}=
\]
\[
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=10^{-\mathrm{pH}} \quad\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=10^{-7.40} \quad\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=3.98 \times 10^{-8}
\]

Carbonic acid, \(\mathrm{H}_{2} \mathrm{CO}_{3}\), is a weak Brønsted-Lowry acid formed when carbon dioxide dissolves in water. Healthy blood at a pH of 7.40 has a hydrogencarbonate : carbonic acid ratio of 10.5 : 1.

A patient is admitted to hospital. The patient's blood pH is measured as 7.20. Calculate the hydrogencarbonate : carbonic acid ratio in the patient's blood.
\(3.98 \times 10^{-8}=K_{a} \times \quad 1\) 10.5
\[
\mathrm{K}_{\mathrm{a}}=4.18 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}
\]
\[
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=10^{-\mathrm{pH}} \quad\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=10^{-7.20}
\]
\[
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=6.31 \times 10^{-8}
\]
\[
6.31 \times 10^{-8}=4.18 \times 10^{-7} \times \frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})}\right]}{\left[\mathrm{HCO}_{3(\mathrm{aq})}^{-}\right]}
\]
\[
\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq)}}\right]}{\left[\mathrm{HCO}_{3}^{-} \text {(aq) }\right)}=\frac{6.31 \times 10^{-8}}{4.18 \times 10^{-7}} \quad \frac{\left[\mathrm{HCO}_{3}^{-}(\mathrm{aq})\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq)}}\right]}=\frac{6.6}{1}
\]

Online Teaching and Learning Resources for Chemistry Students

ChemistryTuition.Net```

