A2 Physical Chemistry

Introduction to Buffers

ChemistryTuition.Net

Introduction

From Le Chatelier we know that if we were to add more H⁺ ions to this equilibrium, it will shift to towards the left to remove the added H⁺ ions.

 $CH_3COOH_{(aq)} \rightleftharpoons H^+_{(aq)} + CH_3COO^-_{(aq)}$

K_a will be restored to its original value.

Ka for ethanoic acid = 1.74×10^{-5} . If the concentration of ethanoic acid is $0.100 \text{ mol dm}^{-3}$

$$K_{a} = \frac{[H^{+}_{(aq)}][CH_{3}COO^{-}_{(aq)}]}{[CH_{3}COOH_{(aq)}]} \qquad 1.74 \times 10^{-5} = \frac{[H^{+}_{(aq)}]^{2}}{0.100}$$

$$1.74 \times 10^{-5} = \frac{[H^+_{(aq)}]^2}{0.100}$$

 $[H^{+}_{(aq)}]^{2} = 1.74 \times 10^{-5} \times 0.100$ $[H^{+}_{(aq)}] = 1.32 \times 10^{-3} \text{ mol } \text{dm}^{-3}$

Mols in 100 cm³

 $CH_3COOH_{(aq)}$ \rightleftharpoons $H^+_{(aq)}$ +
 $CH_3COO^-_{(aq)}$

 0.0999
 1.32 x 10^{-4}
 1.32 x 10^{-4}

Buffers

A **buffer solution** is a system that minimises pH changes on addition of small amounts of an acid or base.

A buffer solution can be made from a weak acid and a salt of the weak acid eg CH_3COOH/CH_3COONa .

Acidic Buffers

A **buffer solution** is a system that minimises pH changes on addition of small amounts of an acid or base.

A buffer solution can be made from a weak acid and a salt of the weak acid eg CH_3COOH/CH_3COONa .

Acidic Buffers

A **buffer solution** is a system that minimises pH changes on addition of small amounts of an acid or base.

A buffer solution can be made from a weak acid and a salt of the weak acid eg CH_3COOH/CH_3COONa .

 $\begin{array}{ccc} \mathsf{CH}_{3}\mathsf{COOH}_{(\mathsf{aq})} & \rightleftharpoons & \mathsf{H}^{+}_{(\mathsf{aq})} + & \mathsf{CH}_{3}\mathsf{COO}_{(\mathsf{aq})} \\ \\ \mathsf{CH}_{3}\mathsf{COO}^{-}\mathsf{Na}^{+}_{(\mathsf{aq})} & \rightarrow & \mathsf{Na}^{+}_{(\mathsf{aq})} + & \mathsf{CH}_{3}\mathsf{COO}_{(\mathsf{aq})} \end{array}$

Basic Buffers

Basic buffer solutions are made from a mixture of a weak alkali and one of its salts.

Eg NH₃ and NH₄⁺Cl⁻.

How acidic buffer solutions control pH

$$HA_{(aq)} \rightleftharpoons H^{+}_{(aq)} + A^{-}_{(aq)}$$
$$\kappa_{a} = \frac{[H^{+}_{(aq)}][A^{-}_{(aq)}]}{[HA_{(aq)}]}$$
$$(H^{+}_{(aq)}][A^{-}_{(aq)}] = K_{a} \times [HA_{(aq)}]$$
$$(H^{+}_{(aq)}] = K_{a} \times [HA_{(aq)}]$$
$$(H^{+}_{(aq)}] = K_{a} \times [HA_{(aq)}]$$

How acidic buffer solutions control pH

$$[H^{+}_{(aq)}] = K_a \times [HA_{(aq)}]$$
$$[A^{-}_{(aq)}]$$

Therefore the pH of an acidic buffer depends on the ratio of [HA] to [A⁻] (i.e. the ratio of [acid] to [salt]).

Addition of acid to an acidic buffer

$$CH_3COOH_{(aq)} \rightleftharpoons H^+_{(aq)} + CH_3COO^-_{(aq)}$$

Addition of acid to an acidic buffer

[H⁺] increases.

The CH_3COO^- reacts with the added acid to produce CH_3COOH and neutralises any added $H^+_{.}$

The Equilibrium moves to **left.**

Addition of alkali to an acidic buffer

[OH⁻] increases.

The [H⁺] ions reacts with the added alkali to produce H₂O and neutralises any added OH⁻. The Equilibrium moves to left.

CH₃COOH dissociates shifting the equilibrium position to the right, restoring the H⁺ ions.

How alkaline buffer solutions control pH $NH_{3(aq)} + H_2O_{(I)} \rightleftharpoons NH_4^+_{(aq)} + OH^-_{(aq)}$ $K_{b} = \frac{[NH_{4}^{+}(aq)][OH_{aq}^{-}]}{[OH_{aq}^{-}]}$ $[NH_{3(aq)}]$ $[NH_{4}^{+}_{(aq)}][OH_{(aq)}^{-}] = K_{b} \times [NH_{3(aq)}]$ The pH of a basic buffer $[OH_{(aq)}] = K_b \times [NH_{3(aq)}]$ depends on the ratio of $[NH_4^+_{(aq)}]$ [base] to [salt]

Addition of acid to an alkaline buffer $NH_3 + H_2O \rightleftharpoons NH_4^+_{(aq)} + OH^-_{(aq)}$

The added H⁺ is removed by reaction with OH⁻.

$$H^+_{(aq)} + OH^-_{(aq)} \rightarrow H_2O_{(I)}$$

Some NH_3 reacts to replace the OH^- .

The $[NH_3]$ falls slightly and the $[NH_4^+]$ rises slightly, but as $[NH_3] \& [NH_4^+] >> [OH^-]$, the ratio of $[NH_3]/[NH_4^+]$ remains roughly constant.

Addition of alkali to an alkaline buffer

$NH_3 + H_2O \rightleftharpoons NH_4^+_{(aq)} + OH_{(aq)}^-$

The added OH^- is removed by reaction with NH_4^+ to form NH_3 .

The $[NH_3]$ rises slightly and the $[NH_4^+]$ falls slightly, but as $[NH_3] \& [NH_4^+] >> [OH^-]$, the ratio of $[NH_3]/[NH_4^+]$ remains roughly constant.

Online Teaching and Learning Resources for Chemistry Students

ChemistryTuition.Net