Introduction to Buffers

ChemistryTuition.Net

Introduction

From Le Chatelier we know that if we were to add more H^{+}ions to this equilibrium, it will shift to towards the left to remove the added H^{+}ions.

$\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{CH}_{3} \mathrm{COO}_{(\mathrm{aq})}^{-}$

K_{a} will be restored to its original value.
Ka for ethanoic acid $=1.74 \times 10^{-5}$. If the concentration of ethanoic acid is $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}\right]} \quad 1.74 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]^{2}}{0.100}
$$

$$
1.74 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}(\mathrm{aq)})\right]^{2}}{0.100}
$$

$$
\left.\begin{array}{rl}
{\left[\mathrm{H}^{+}(\mathrm{aq})\right.}
\end{array}\right]^{2}=1.74 \times 10^{-5} \times 0.1000 .
$$

Mols in $100 \mathrm{~cm}^{3}$
$\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}$
0.0999
$\rightleftharpoons \quad \mathrm{H}^{+}{ }_{(\mathrm{aq})}{ }^{+}$
1.32×10^{-4}
$\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$
1.32×10^{-4}

Buffers

A buffer solution is a system that minimises pH changes on addition of small amounts of an acid or base.

A buffer solution can be made from a weak acid and a salt of the weak acid eg $\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{CH}_{3} \mathrm{COONa}$.

$$
\begin{array}{llll}
\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})} & \rightleftharpoons & \mathrm{H}^{+}{ }_{(\mathrm{aq})}+ & \mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\mathrm{aq})} \\
\mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{Na}^{+}{ }_{(\mathrm{aq})} & \rightarrow & \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+ & \mathrm{CH}_{3} \mathrm{COO}_{(\mathrm{aq})}^{-}
\end{array}
$$

Acidic Buffers

A buffer solution is a system that minimises pH changes on addition of small amounts of an acid or base.

A buffer solution can be made from a weak acid and a salt of the weak acid eg $\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{CH}_{3} \mathrm{COONa}$.

$$
\begin{array}{llll}
\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})} & \rightleftharpoons & \mathrm{H}^{+}{ }_{(\mathrm{aq})}+ & \mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\mathrm{aq})} \\
\mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{Na}^{+}{ }_{(\mathrm{aq})} & \rightarrow & \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+ & \mathrm{CH}_{3} \mathrm{COO}_{(\mathrm{aq})}^{-}
\end{array}
$$

Acidic Buffers

A buffer solution is a system that minimises pH changes on addition of small amounts of an acid or base.

A buffer solution can be made from a weak acid and a salt of the weak acid eg $\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{CH}_{3} \mathrm{COONa}$.

$$
\begin{array}{llll}
\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})} & \rightleftharpoons & \mathrm{H}^{+}{ }_{(\mathrm{aq})}+ & \mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\mathrm{aq})} \\
\mathrm{CH}_{3} \mathrm{COOO}^{-} \mathrm{Na}^{+}{ }_{(\mathrm{aq})} & \rightarrow & \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+ & \mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}
\end{array}
$$

Basic Buffers

Basic buffer solutions are made from a mixture of a weak alkali and one of its salts.
$\mathrm{Eg} \mathrm{NH}_{3}$ and $\mathrm{NH}_{4}{ }^{+} \mathrm{Cl}$ -

How acidic buffer solutions control pH

$$
\begin{gathered}
H A_{(a q)} \rightleftharpoons H_{(a q)}^{+}+A_{(a q)}^{-} \\
K_{a}=\frac{\left[H^{+}{ }_{(a q)}\right]\left[A_{(a q)}^{-}\right]}{\left[\mathrm{HA}_{(a q)}\right]} \\
{\left[\mathrm{H}_{(a q)}^{+}\right]\left[A_{(a q)}^{-}\right]=K_{a} \times\left[H_{(a q)}\right]} \\
{\left[H^{+}{ }_{(a q)}\right]=K_{a} \times \frac{\left[H_{(a q)}\right]}{\left[A_{(a q)}\right]}}
\end{gathered}
$$

How acidic buffer solutions control pH

$$
\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=\mathrm{K}_{\mathrm{a}} \times\left[\mathrm{HA}_{(\mathrm{aq})}\right]
$$

Therefore the pH of an acidic buffer depends on the ratio of [HA] to [A] (i.e. the ratio of [acid] to [salt]).

Addition of acid to an acidic buffer

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})} \quad \rightleftharpoons \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\quad \mathrm{CH}_{3} \mathrm{COO}_{(\mathrm{aq})}^{-}
$$

Addition of acid to an acidic buffer

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})} \quad \rightleftharpoons \quad \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\quad \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})
$$

[H^{+}] increases.
The $\mathrm{CH}_{3} \mathrm{COO}^{-}$reacts with the added acid to produce $\mathrm{CH}_{3} \mathrm{COOH}$ and neutralises any added H^{+}

The Equilibrium moves to left.

Addition of alkali to an acidic buffer

$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})} \quad \rightleftharpoons \quad \mathrm{H}^{+}(\mathrm{aq})+\quad \mathrm{OH}_{(\mathrm{aq})}$
$[\mathrm{OH}]$] increases.
The $\left[\mathrm{H}^{+}\right]$ions reacts with the added alkali to produce $\mathrm{H}_{2} \mathrm{O}$ and neutralises any added OH^{-} The Equilibrium moves to left.
$\mathrm{CH}_{3} \mathrm{COOH}$ dissociates shifting the equilibrium position to the right, restoring the H^{+}ions.
$\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})} \quad \rightleftharpoons \quad \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\quad \mathrm{CH}_{3} \mathrm{COO}_{(\mathrm{aq})}^{-}$

How alkaline buffer solutions control pH

$\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-}$

$$
\left[\mathrm{NH}_{4}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}_{(\mathrm{aq})}^{-}\right]=\mathrm{K}_{\mathrm{b}} \times\left[\mathrm{NH}_{3(\mathrm{aq})}\right]
$$

$$
\left.\left[\mathrm{OH}_{(\text {(aq) }}^{-}\right]=\mathrm{K}_{\mathrm{b}} \times \frac{\left[\mathrm{NH}_{3(\mathrm{aq})}\right]}{\left[\mathrm{NH}_{4}^{+}(\text {(aq) }\right.}\right]
$$

The pH of a basic buffer depends on the ratio of [base] to [salt]

Addition of acid to an alkaline buffer

$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}_{(\mathrm{aq})}^{-}$

The added H^{+}is removed by reaction with OH^{-}.

$$
\mathrm{H}^{+}\left(\mathrm{aq)}+\mathrm{OH}_{(\mathrm{aq)}}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\right.
$$

Some NH_{3} reacts to replace the OH^{-}.
The $\left[\mathrm{NH}_{3}\right]$ falls slightly and the $\left[\mathrm{NH}_{4}{ }^{+}\right]$rises slightly, but as
$\left[\mathrm{NH}_{3}\right] \&\left[\mathrm{NH}_{4}^{+}\right] \gg\left[\mathrm{OH}^{-}\right]$, the ratio of $\left[\mathrm{NH}_{3}\right] /\left[\mathrm{NH}_{4}^{+}\right]$remains roughly constant.

Addition of alkali to an alkaline buffer

$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$

The added OH^{-}is removed by reaction with $\mathrm{NH}_{4}{ }^{+}$to form NH_{3}.

The $\left[\mathrm{NH}_{3}\right]$ rises slightly and the $\left[\mathrm{NH}_{4}{ }^{+}\right]$falls slightly, but as $\left[\mathrm{NH}_{3}\right]$ \& $\left[\mathrm{NH}_{4}^{+}\right] \gg\left[\mathrm{OH}^{-}\right]$, the ratio of $\left[\mathrm{NH}_{3}\right] /\left[\mathrm{NH}_{4}^{+}\right]$remains roughly constant.

Online Teaching and Learning Resources for Chemistry Students

ChemistryTuition.Net

