General Chemistry

Balancing Redox Equations using half equations

Download slides at ChemistryTuition. Net

Using half equations to balance redox equations

1. Ensure both equations have the same number of electrons.
2. Check which equation will be reversed
3. Combine the equations
4. Cancel species that appear on both sides.

Example 1 - Construct the equation for $\mathrm{MnO}_{4}{ }^{-}$reacting with Fe^{2+}

$$
\begin{equation*}
\mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{MnO}_{4}^{-}{ }_{(\mathrm{aq})}+8 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \tag{2}
\end{equation*}
$$

Using half equations to balance redox equations

2. Check which equation will be reversed
3. Combine the equations
4. Cancel species that appear on both sides.

Example 1 - Construct the equation for $\mathrm{MnO}_{4}{ }^{-}$reacting with Fe^{2+}
$\mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}$
$\mathrm{MnO}_{4}^{-}{ }_{(\mathrm{aq})}+8 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
[2]

Using half equations to balance redox equations

2. Check which equation will be reversed
3. Combine the equations
4. Cancel species that appear on both sides.

Example 1 - Construct the equation for $\mathrm{MnO}_{4}{ }^{-}$reacting with Fe^{2+}

$$
\begin{aligned}
& \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \\
& \mathrm{MnO}_{4}{ }_{(\mathrm{aq})}+8 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
\end{aligned}
$$

Using half equations to balance redox equations

1. Ensure both equations have the same number of electrons.
2. Combine the equations
3. Cancel species that appear on both sides.

Example 1 - Construct the equation for $\mathrm{MnO}_{4}{ }^{-}$reacting with Fe^{2+}
$5 \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+5 \mathrm{e}^{-} \rightarrow 5 \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}$
$\mathrm{MnO}_{4}^{-}{ }_{(\mathrm{aq})}+8 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
[2]

Using half equations to balance redox equations

1. Ensure both equations have the same number of electrons.
2. Combine the equations
3. Cancel species that appear on both sides.

Example 1 - Construct the equation for $\mathrm{MnO}_{4}{ }^{-}$reacting with Fe^{2+}

$$
\begin{equation*}
5 \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+5 \mathrm{e}^{-} \rightarrow 5 \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \tag{1}
\end{equation*}
$$

$$
\mathrm{MnO}_{4}^{-}{ }_{(\mathrm{aq})}+8 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Using half equations to balance redox equations

1. Ensure both equations have the same number of electrons.
2. Check which equation will be reversed
3. Cancel species that appear on both sides.

Example 1 - Construct the equation for $\mathrm{MnO}_{4}{ }^{-}$reacting with Fe^{2+}
$5 \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \rightarrow 5 \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+5 \mathrm{e}^{-}$
$\mathrm{MnO}_{4}^{-}{ }_{(\mathrm{aq})}+8 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
[2]

$$
5 \mathrm{Fe}^{2+}{ }_{(\text {aq) }} \mathrm{MnO}_{4}^{-}{ }_{(\mathrm{aq})}+8 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow 5 \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Using half equations to balance redox equations

1. Ensure both equations have the same number of electrons.
2. Check which equation will be reversed
3. Combine the equations

Example 1 - Construct the equation for $\mathrm{MnO}_{4}{ }^{-}$reacting with Fe^{2+}

$$
\begin{equation*}
5 \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \rightarrow 5 \mathrm{Fe}^{3+}{ }_{(\mathrm{aq)}}+5 \mathrm{e}^{-} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{MnO}_{4}^{-}{ }_{(\mathrm{aq})}+8 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \tag{2}
\end{equation*}
$$

$$
5 \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \mathrm{MnO}_{4}^{-}{ }_{(\mathrm{aq})}+8 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \rightarrow 5 \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Using half equations to balance redox equations

1. Ensure both equations have the same number of electrons.
2. Check which equation will be reversed
3. Combine the equations
4. Cancel species that appear on both sides.

Example 2 - Construct the equation for MnO_{4}^{-}reacting with Cr^{3+}

$$
\begin{align*}
& \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \tag{3}\\
& \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
\end{align*}
$$

Using half equations to balance redox equations

2. Check which equation will be reversed
3. Combine the equations
4. Cancel species that appear on both sides.

Example 2 - Construct the equation for MnO_{4}^{-}reacting with Cr^{3+}

Using half equations to balance redox equations

1. Ensure both equations have the same number of electrons.
2. Combine the equations
3. Cancel species that appear on both sides.

Example 2 - Construct the equation for MnO_{4}^{-}reacting with Cr^{3+}

$$
\begin{align*}
& 6 \mathrm{MnO}_{4}^{-}+48 \mathrm{H}^{+}+30 \mathrm{e}^{-} \rightarrow 6 \mathrm{Mn}^{2+}+24 \mathrm{H}_{2} \mathrm{O} \tag{3}\\
& 5 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+70 \mathrm{H}^{+}+30 \mathrm{e}^{-} \rightarrow 10 \mathrm{Cr}^{3+}+35 \mathrm{H}_{2} \mathrm{O} \tag{4}
\end{align*}
$$

Using half equations to balance redox equations

1. Ensure both equations have the same number of electrons.
2. Combine the equations
3. Cancel species that appear on both sides.

Example 2 - Construct the equation for MnO_{4}^{-}reacting with Cr^{3+}

$$
\begin{align*}
& 6 \mathrm{MnO}_{4}^{-}+48 \mathrm{H}^{+}+30 \mathrm{e}^{-} \rightarrow 6 \mathrm{Mn}^{2+}+24 \mathrm{H}_{2} \mathrm{O} \tag{3}\\
& 5 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+70 \mathrm{H}^{+}+30 \mathrm{e}^{-} \rightarrow 10 \mathrm{Cr}^{3+}+35 \mathrm{H}_{2} \mathrm{O} \tag{4}
\end{align*}
$$

Using half equations to balance redox equations

1. Ensure both equations have the same number of electrons.
2. Combine the equations
3. Cancel species that appear on both sides.

Example 2 - Construct the equation for MnO_{4}^{-}reacting with Cr^{3+}

$$
\begin{aligned}
& 6 \mathrm{MnO}_{4}^{-}+48 \mathrm{H}^{+}+30 \mathrm{e}^{-} \rightarrow 6 \mathrm{Mn}^{2+}+24 \mathrm{H}_{2} \mathrm{O} \\
& 10 \mathrm{Cr}^{3+}+35 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+70 \mathrm{H}^{+}+30 \mathrm{e}^{-}
\end{aligned}
$$

Using half equations to balance redox equations

1. Ensure both equations have the same number of electrons.
2. Check which equation will be reversed
3. Cancel species that appear on both sides.

Example 2 - Construct the equation for MnO_{4}^{-}reacting with Cr^{3+}

$$
\begin{align*}
& 6 \mathrm{MnO}_{4}^{-}+48 \mathrm{H}^{+}+30 \mathrm{e}^{-} \rightarrow 6 \mathrm{Mn}^{2+}+24 \mathrm{H}_{2} \mathrm{O} \tag{3}\\
& 10 \mathrm{Cr}^{3+}+35 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+70 \mathrm{H}^{+}+30 \mathrm{e}^{-} \\
& 6 \mathrm{MnO}_{4}^{-}+48 \mathrm{H}^{+}+10 \mathrm{Cr}^{3+}+35 \mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{Mn}^{2+}+24 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+70 \mathrm{H}^{+}
\end{align*}
$$

Using half equations to balance redox equations

1. Ensure both equations have the same number of electrons.
2. Check which equation will be reversed
3. Combine the equations

Example 2 - Construct the equation for MnO_{4}^{-}reacting with Cr^{3+}

$$
\begin{align*}
& 6 \mathrm{MnO}_{4}^{-}+48 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow 6 \mathrm{Mn}^{2+}+24 \mathrm{H}_{2} \mathrm{O} \tag{3}\\
& 5 \mathrm{Cr}^{3+}+35 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+70 \mathrm{H}^{+}+30 \mathrm{e}^{-} \tag{4}\\
& 6 \mathrm{MnO}_{4}^{-}+48 \mathrm{H}^{+}+10 \mathrm{Cr}^{3+}+35 \mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{Mn}^{2+}+24 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+70 \mathrm{H}^{+}
\end{align*}
$$

Using half equations to balance redox equations

1. Ensure both equations have the same number of electrons.
2. Check which equation will be reversed
3. Combine the equations

Example 2 - Construct the equation for MnO_{4}^{-}reacting with Cr^{3+}

$$
\begin{align*}
& 6 \mathrm{MnO}_{4}^{-}+48 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow 6 \mathrm{Mn}^{2+}+24 \mathrm{H}_{2} \mathrm{O} \tag{3}\\
& 5 \mathrm{Cr}^{3+}+35 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+70 \mathrm{H}^{+}+30 \mathrm{e}^{-} \tag{4}\\
& 6 \mathrm{MnO}_{4}^{-}+48 \mathrm{H}^{+}-10 \mathrm{Cr}^{3+}+35 \mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{Mn}^{2+}+24 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+70 \mathrm{H}^{+}
\end{align*}
$$

Using half equations to balance redox equations

1. Ensure both equations have the same number of electrons.
2. Check which equation will be reversed
3. Combine the equations

Example 2 - Construct the equation for MnO_{4}^{-}reacting with Cr^{3+}

$$
\begin{align*}
& 6 \mathrm{MnO}_{4}^{-}+48 \mathrm{H}^{+}+30 \mathrm{e}^{-} \rightarrow 6 \mathrm{Mn}^{2+}+24 \mathrm{H}_{2} \mathrm{O} \tag{3}\\
& 5 \mathrm{Cr}^{3+}+35 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+70 \mathrm{H}^{+}+30 \mathrm{e}^{-} \tag{4}
\end{align*}
$$

$6 \mathrm{MnO}_{4}^{-}+44^{++}+10 \mathrm{Cr}^{3+}+35 \mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{Mn}^{2+}+24 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+22 \mathrm{H}^{-}$

Using half equations to balance redox equations

1. Ensure both equations have the same number of electrons.
2. Check which equation will be reversed
3. Combine the equations

Example 2 - Construct the equation for MnO_{4}^{-}reacting with Cr^{3+}

$$
\begin{align*}
& 6 \mathrm{MnO}_{4}^{-}+48 \mathrm{H}^{+}+30 \mathrm{e}^{-} \rightarrow 6 \mathrm{Mn}^{2+}+24 \mathrm{H}_{2} \mathrm{O} \tag{3}\\
& 5 \mathrm{Cr}^{3+}+35 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+70 \mathrm{H}^{+}+30 \mathrm{e}^{-} \tag{4}
\end{align*}
$$

Using half equations to balance redox equations

1. Ensure both equations have the same number of electrons.
2. Check which equation will be reversed
3. Combine the equations

Example 2 - Construct the equation for MnO_{4}^{-}reacting with Cr^{3+}

$$
\begin{align*}
& 6 \mathrm{MnO}_{4}^{-}+48 \mathrm{H}^{+}+30 \mathrm{e}^{-} \rightarrow 6 \mathrm{Mn}^{2+}+24 \mathrm{H}_{2} \mathrm{O} \tag{3}\\
& 10 \mathrm{Cr}^{3+}+35 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+70 \mathrm{H}^{+}+30 \mathrm{e}^{-} \tag{4}
\end{align*}
$$

$6 \mathrm{MnO}_{4}^{-}+10 \mathrm{Cr}^{3+}+11 \mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{Mn}^{2+}+24 \mathrm{C}^{-} \mathrm{O}-5 \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+22 \mathrm{H}^{+}$

Using half equations to balance redox equations

1. Ensure both equations have the same number of electrons.
2. Check which equation will be reversed
3. Combine the equations
4. Cancel species that appear on both sides.

Example 2 - Construct the equation for $\mathrm{MnO}_{4}{ }^{-}$reacting with Cr^{3+}

$$
\begin{align*}
& 6 \mathrm{MnO}_{4}^{-}+48 \mathrm{H}^{+}+30 \mathrm{e}^{-} \rightarrow 6 \mathrm{Mn}^{2+}+24 \mathrm{H}_{2} \mathrm{O} \tag{3}\\
& 10 \mathrm{Cr}^{3+}+35 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+70 \mathrm{H}^{+}+30 \mathrm{e}^{-} \tag{4}
\end{align*}
$$

$6 \mathrm{MnO}_{4}{ }^{-}+10 \mathrm{Cr}^{3+}+11 \mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{Mn}^{2+}+5 \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+22 \mathrm{H}$

Online Teaching and Learning
 Resources for Chemistry Students

ChemistryTuition.Net

