Back Titrations – Introduction and Worked Example

What is the point of back titrations?

Back titrations allow us to find the purity of solids and when the reaction is too slow to use a standard titration technique.

How could I find the purity of this sample of calcium carbonate contaminated with calcium sulphate?

We add drop by drop 1 mol/dm³ HCl_(aq) until we no longer observe bubbles been produced? How accurate would this method be?

Worked Example – Finding %purity

Step 1

5.00 g of the impure calcium carbonate is placed in a beaker. 50.00 cm³ of 1.00 mol/dm³ HCl_(aq) is added using a burette. The mixture is stirred and once it has stopped fizzing, a further 10.00 cm³ is added using the burette, no further fizzing is observed.

Step 2

25.0 cm³ of the resulting solution are removed using a pipette and placed in a conical flask, together with 3 drops of phenolphthalein indicator.

Step 3

A solution of 0.500 mol/dm³ NaOH_(aq) is added to a burette and it is found that 10.15 cm³ is required to reach the end point.

Worked Example – Finding %purity

Step 1 5.00 g of the impure calcium carbonate is placed in a beaker.

5.00 g

Step 1 5.00 g of the impure calcium carbonate is placed in a beaker.

50.00 cm³ of 1.00 mol/dm³ HCl_(aq) is added using a burette.

Step 1 5.00 g of the impure calcium carbonate is placed in a beaker.

50.00 cm³ of 1.00 mol/dm³ $HCl_{(aq)}$ is added using a burette.

The mixture is stirred and once it has stopped fizzing, a further 10.00 cm³ is added using the burette, no further fizzing is observed.

Total number of moles of HCl = Concentration x Vol (dm³) added

- = 1.00 x 0.0600
- = 0.0600 moles

25.0 cm³ of the resulting solution are removed using a pipette, placed in a conical flask, together with 3 drops of phenolphthalein indicator.

25.0 cm³ 60 cm³

25.0 cm³ of the resulting solution are removed using a pipette, placed in a conical flask, together with 3 drops of phenolphthalein indicator.

25.0 cm³ of the resulting solution are removed using a pipette, placed in a conical flask, together with 3 drops of phenolphthalein indicator.

Step 3

A solution of 0.500 mol/dm³ NaOH_(aq) is added to a burette and it is found that 10.15 cm³ is required to reach the end point.

 25.0 cm^3 of the resulting solution are removed using a pipette, placed in a conical flask, together with 3 drops of phenolphthalein indicator.

Step 3

A solution of 0.500 mol/dm³ NaOH_(aq) is added to a burette and **it is** found that 10.15 cm³ is required to reach the end point.

25.0

Moles of NaOH = $0.500 \times 0.01015 = 0.005075$ moles

Moles of HCl in 25.0 cm³ = 0.005075 moles

 $HCl_{(aq)} + NaOH_{(aq)} \rightarrow NaCl_{(aq)} + H_2O_{(I)}$

Moles of HCl in 60.0 cm³

0.005075 x 60.0 = 0.01218 moles

0.500 mol/dm³ NaOH_(aq)

Total number of moles of HCl added = **0.0600 moles**

Moles of HCl remaining after reacting with = 0.01218 moles CaCO₃

Moles of HCl that reacted with $CaCO_3 = 0.0600 - 0.01218 = 0.04782$

$$CaCO_{3(s)} + 2HCI_{(aq)} \rightarrow CaCI_{2(aq)} + H_2O_{(l)} + CO_2$$

Moles of CaCO₃ = $\frac{0.04782}{2}$ = 0.02591 moles
Mass of CaCO₃ = 0.02591 x 100.1 = **2.59 g**
% purity of CaCO₃ = $\frac{2.59}{5.00}$ x 100 = **51.9 %**