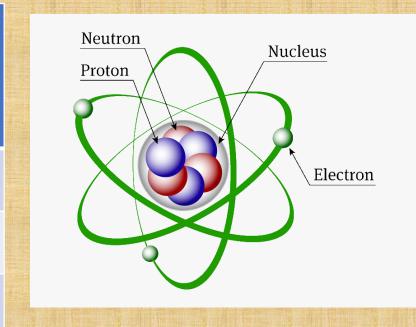
Key Concepts essential for A Level Chemistry

Atoms, Formulae, Molecules and Naming Compounds

Atoms


• All matter is made of particles. At one time, it was thought that the tiniest particle was the *atom*;.

 We now know that atoms can be split and that there are smaller particles than atoms, the so- called sub-atomic particles, electrons, protons and neutrons.

 Chemistry is all about rearrangements of atoms that do not themselves change.

Structure of the Atom

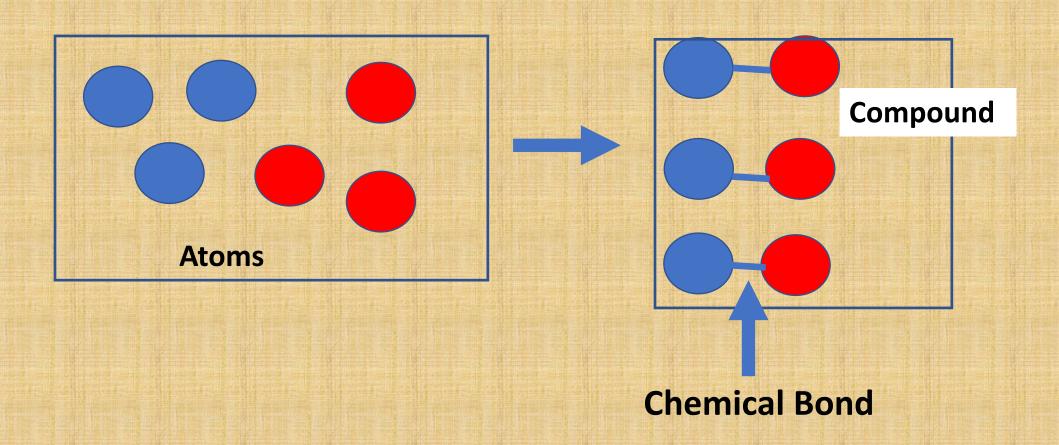
Particle	Relative mass (Carbon -12 scale)	Relative charge (on scale electron charge = -1 unit)
Proton	1	+1
Electron	1/1840	-1
Neutron	1	0

The atom is mostly empty space. It has a solid core or *nucleus*, the centre that contains the protons and neutrons. The electrons circulate round the nucleus in specific *orbits* or *shells*.

Atoms

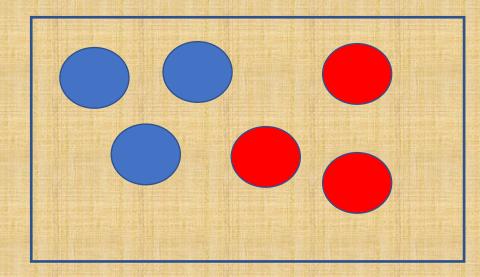
• Atoms are the particles whose symbols are found in the periodic table. There are only about 100 of them.

 There are more substances in the world than the 100 or so different kinds of atom. The other substances are made by combining atoms in various ways to make compounds.

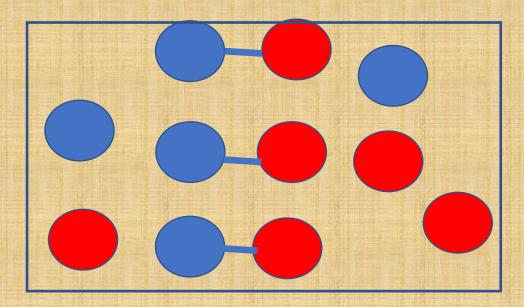

• An atom is the smallest, electrically neutral, particle of an element that can take part in a chemical change.

The Periodic Table

 https://www.rsc.org/periodictable/?gclid=EAIaIQobChMIzdOn6Nnf6QIVhvhRCh3HqAnrEAAYASAAE gLqjfD BwE


Compounds

A compound is a substance formed when two or more chemical elements are chemically bonded together.



Mixtures

In mixtures, the substances present are not chemically bonded together.

Mixture of two different atoms

Mixture of two types of atoms and a compound.

Chemical Formulae

- A chemical formula is a useful shorthand method for describing the atoms in a chemical
- The chemical formula of an element or compound tells you:
 - Which elements it contains: eg FeSO₄ contains iron, sulphur and oxygen
 - How many atoms of each kind are in each molecule: eg $\rm H_2SO_4$ contains two atoms of hydrogen, one atom of sulphur and four atoms of oxygen in each molecule

Polyatomic Ions

A polyatomic ion is an ion composed of more than one atom.

Name	Symbol	Charge
Ammonium	NH_4	+1
Carbonate	CO ₃	-2
Hydroxide	ОН	-1
Nitrate	NO ₃	-1
Nitrite	NO_2	-1
Sulphate	SO ₄	-2
Sulphite	SO ₃	-2
Cyanide	CN	-1

Name	Symbol	Charge
Hydrogen-	HCO ₃	-1
carbonate		
Hydrogen-sulphate	HSO ₄	-1
Chlorate(I)	ClO	-1
Chlorate(V)	ClO ₃	-1
Vanadate(V)	VO_3	-1
Manganate(VII)	MnO_4	-1
Chromate(VI)	CrO ₄	-2
Dichromate(VI)	Cr_2O_7	-2

Naming Inorganic Compounds

1) If there are only two elements present then the name will end in -ide

Thus, oxides contain an element and oxygen eg

Na₂O is **Sodium Oxide**

CaO is Calcium Oxide

Chlorides contain an element and chlorine eg

MgCl₂ is Magnesium Chloride

AlCl₃ is **Aluminium Chlor**ide

Bromides and lodides have an element and either bromine or iodine eg

KBr is **Potassium Bromide**

Znl is **Zinc lodide**

Hydrides contain an element and hydrogen and Nitrides an element and nitrogen. eg

LiH is **Lithium Hydride**

Mg₃N₂ is Magnesium Nitr<u>ide</u>

Other elements also form these types of compounds and the name always ends in -ide. The exceptions to this are hydroxides that have the -OH group and cyanides, which have the -CN group. eg

NaOH is **Sodium Hydroxide** Ca(OH)₂ is **Calcium Hydroxide**

KCN is **Potassium Cyanide**

2) If the elements concerned have more than one charge then this must be shown.

 Thus as iron has charge of +2 and +3, the name Iron Chloride would not tell you which of the two possible compounds FeCl₂ or FeCl₃ is being considered.

• In this case the valency of the iron is indicated by the use of a Roman II or III in brackets after the name of the metal. In this case Iron(II) Chloride for FeCl₂ or Iron(III) Chloride for FeCl₃.

3) For compounds containing two **non-metal** atoms the actual number of atoms of the element present are stated.

• CO is	Carbon Monoxide where mon- means one
• CO ₂ is	Carbon Dioxide where di- means two
• SO ₂ is	Sulphur Dioxide. This could be called Sulphur(IV) Oxide
• SO ₃ is	Sulphur Trioxide. This could be called Sulphur(VI) Oxide
• PCl ₃ is	Phosphorus Trichloride or Phosphorus(III) Chloride
• PCl ₅ is	Phosphorus Pentachloride or Phosphorus(V) Chloride
• CCl ₄ is	Carbon Tetrachloride

Silicon Tetrachloride.

• SiCl₄ is

4) Where a compound contains a metal, a non-metal and oxygen it has a name ending in -ate or -ite. eg

Carbonate -CO₃

Sulphate -SO₄

Nitrate -NO₃

Thus a compound of sodium, carbon and oxygen would be Na₂CO₃ and would be called Sodium Carbonate.

NaNO ₃	is	Sodium I	Vitrate
네. 회사 : 이 그리고 보고 있지 않는 사람들이 되는 사람들이 되는 사람들이 되는 사람들이 되었다. 회사			

Mg(NO₃)₂ is Magnesium Nitrate

 $Fe_2(SO_4)_3$ is Iron(III) Sulphate

FeSO₄ is Iron(II) Sulphate

5) Because most non-metals can have more than one polyatomic ion they can also produce more than one acid upon which these groups are based.

Thus sulphur can form sulphates and sulphites.

The ending -ite is used when an element forms more than one such compound.

In all cases the -ite is used for the compound with the lower number of oxygens atoms.

Sulphate can also be referred to as sulphate(VI) and sulphite can also be referred to as sulphate(IV).

In the case of nitrogen with oxygen the compounds would be **nitrate** and **nitrite** or **nitrate(V)** and **nitrate(III)**.

Polyatomic Ions

Common name	Systematic name	Formulae
Sulphate	Sulphate(VI)	-SO ₄
Sulphite	Sulphate(IV)	-SO ₃
Nitrate	Nitrate(V)	-NO ₃
Nitrite	Nitrate(III)	-NO ₂
Chlorate	Chlorate(V)	-CIO ₃
Hypochlorite	Chlorate(I)	-CIO

- 6) When a compound is considered it is usual to put the metal down first both in the name and the formula. The exceptions to this rule are in organic compounds where the name has the metal first but the formula has the metal at the end. eg CH₃COONa is **Sodium Ethanoate**
- 7) The elements nitrogen and hydrogen can join together to form a group called the ammonium group. This must not be confused with the compound ammonia This ammonium group has the formula NH_4^+ and sits in the place generally taken by a metal in the formula. Eg

NH ₄ Cl	is	Ammonium Chloride
(NH ₄) ₂ SO ₄	is	Ammonium Sulphate
NH ₄ ClO ₃	is	Ammonium Chlorate(V)

8) There are a small number of simple molecules that do not follow the above rules. You will need to learn their names and formulae.

Water H₂O

Sulphuric Acid H₂SO₄

Nitric Acid HNO₃

Hydrochloric Acid HCl

Ammonia NH₃

Organic compounds have their own set of rules for naming but you will need to learn some of the basic rules. The names are generally based on the names of the simple hydrocarbons. These follow a simple pattern after the first four:

Formula	Name
CH ₄	Methane
C ₂ H ₆	Ethane
C ₃ H ₈	Propane
C_4H_{10}	Butane

After butane the names are based on the prefix for the number of carbons C_5 -pent, C_6 - hex and so on.

Naming Compounds p1

https://tinyurl.com/y8ktpnad

1	H ₂ O	11	CH ₄	21	CaCl ₂
2	CO_2	12	H_2S	22	$Ca(NO_3)_2$
3	NH ₃	13	HBr	23	Ca(OH) ₂
4	O_2	14	H ₂ SO ₄	24	CaSO ₄
5	H_2	15	HNO ₃	25	BaCl ₂
6	SO_2	16	NaCl	26	AlCl ₃
7	SO ₃	17	NaNO ₃	27	$Al(NO_3)_3$
8	HC1	18	Na ₂ CO ₃	28	$Al_2(SO_4)_3$
9	HI	19	NaOH	29	FeSO ₄
10	HF	20	Na ₂ SO ₄	30	FeCl ₂

Naming Compounds p2

https://tinyurl.com/y8ktpnad

31	FeCl ₃	41	CuSO ₄	51	C_2H_6
32	$Fe_2(SO_4)_3$	42	ZnCl ₂	52	C_4H_{10}
33	PbO	43	AgNO ₃	53	C_8H_{18}
34	PbO ₂	44	NH ₄ Cl	54	$(NH_4)_2CO_3$
35	Pb(NO ₃) ₂	45	$(NH_4)_2SO_4$	55	KMnO ₄
36	PbCl ₂	46	NH ₄ VO ₃ (V is Vanadium)	56	K ₂ CrO ₄
37	PbSO ₄	47	KClO ₃	57	KHCO ₃
38	$Cu(NO_3)_2$	48	KIO ₃	58	KI
39	CuCl	49	NaClO NaClO	59	$Co(NO_3)_2$
40	CuCl ₂	50	NaNO ₂	60	KAt

Naming Compounds (answers)

1 Water	11 Methane	21 Calcium chloride
2 Carbon dioxide	12 Hydrogen sulphide	22 Calcium nitrate
3 Ammonia	13 Hydrogen bromide	23 Calcium hydroxide
4 Oxygen	14 Sulphuric acid	24 Calcium sulphate
5 Hydrogen	15 Nitric acid	25 Barium chloride
6 Sulphur dioxide (or IV oxide)	16 Sodium chloride	26 Aluminium chloride
7 Sulphur trioxide (or VI oxide)	17 Sodium nitrate	27 Aluminium nitrate
8 Hydrogen chloride	18 Sodium carbonate	28 Aluminium sulphate
9 Hydrogen iodide	19 Sodium hydroxide	29 Iron(II) sulphate
10 Hydrogen fluoride	20 Sodium sulphate	30 Iron(II)chloride

Naming Compounds (answers)

31 Iron(III) chloride	41 Copper(II) sulphate	51 Ethane
32 Iron(III) sulphate	42 Zinc chloride	52 Butane
33 Lead(II) oxide	43 Silver nitrate	53 Octane
34 Lead(IV) oxide	44 Ammonium chloride	54 Ammonium carbonate
35 Lead(II) nitrate	45 Ammonium sulphate	55 Potassium manganate(VII)
36 Lead(II) chloride	46 Ammonium vanadate(V)	56 Potassium chromate(VI)
37 Lead (II) sulphate	47 Potassium chlorate(V)	57 Potassium hydrogencarbonate
38 Copper(II) nitrate	48 Potassium iodate	58 Potassium iodide
39 Copper(I) chloride	49 Sodium chlorate(I)	59 Cobalt(II) nitrate
40 Copper(II) chloride	50 Sodium nitrite	60 Potassium astatide