# Module 2: Foundations in Chemistry 

### 2.1 Atoms and Reactions

### 2.1.2 Compounds, Formulae and Equations

## Writing Formulae

You can work out the charge of most ions from the position in the Periodic Table.

| Group Number | Charge | Group Number | Charge |
| :---: | :---: | :---: | :---: |
| 1 | +1 | 5 | -3 |
| 2 | +2 | 6 | -2 |
| 3 | +3 | 7 | -1 |

To work out the formula of an ionic compound the charges must be balanced.
The transition elements can have different charges - the roman numeral after the name tells you the charge they have eg Iron (II) $=+2$, Iron (III) $=+3$.

Some ions you just have to learn:

| Name | Ion | Name | Ion |
| :---: | :--- | :---: | :---: |
| Nitrate | $\mathrm{NO}_{3}{ }^{-}$ | Ammonium | $\mathrm{NH}_{4}^{+}$ |
| Carbonate | $\mathrm{CO}_{3}{ }^{2-}$ | Zinc | $\mathrm{Zn}^{2+}$ |
| Sulfate | $\mathrm{SO}_{4}{ }^{2-}$ | Silver | $\mathrm{Ag}^{+}$ |
| Hydroxide | $\mathrm{OH}^{-}$ |  |  |

## Chemical Equations

All symbol equations must be balanced to ensure that the same number of atoms are present on both sides of the equation.
e.g. $\mathrm{Na}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}$ needs to be balanced to give $2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$.

## State Symbols

( s ) = solid, $(\mathrm{l})=$ liquid, $(\mathrm{g})=$ gas
(aq) = aqueous (dissolved in water)

