Weak Acids

ChemistryTuition.Net

Weak Acids

Weak acids are only partially dissociated into ions when added to water.
All organic acids are weak acids.

$\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}_{(\mathrm{aq})}+\mathrm{CH}_{3} \mathrm{COO}_{(\mathrm{aq})}^{-}$

Therefore there are many more H^{+}ions in $1 \mathrm{dm}^{3}$ of $1 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid than there are in the same volume of $1 \mathrm{~mol} / \mathrm{dm}^{3}$ ethanoic acid.

The acid dissociation constant $\left(K_{\mathrm{a}}\right)$ is the

pKa - the smaller the value, the stronger the acid

Calculating pH of a weak acid

$$
\mathrm{HA}_{(\mathrm{aq})} \rightleftharpoons \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{A}_{(\mathrm{aq})}^{-}
$$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]\left[\mathrm{A}_{(\mathrm{aq})}^{-}\right]}{\left[\mathrm{HA}_{(\mathrm{aq})}\right]} \\
& \text { Approximations } \\
& {\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=\left[\mathrm{A}^{-}{ }_{(\mathrm{aq})}\right]} \\
& \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}{ }_{\text {(aq) }}\right]^{2}}{\left[\mathrm{HA}_{(\mathrm{aq)}}\right]} \\
& {\left[H A_{(a q)}\right]=\text { original concentration }}
\end{aligned}
$$

$$
\begin{array}{ll}
{\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]^{2}=\mathrm{K}_{\mathrm{a}} \times\left[\mathrm{HA}_{(\mathrm{aq})}\right]} \\
{\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=\sqrt{\mathrm{K}_{\mathrm{a}} \times\left[\mathrm{HA}_{(\mathrm{aq})}\right]}} & \mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]
\end{array}
$$

Worked examples using K_{a} and $\mathrm{pK} \mathrm{a}_{\mathrm{a}}$

Example 1

Calculate the $\mathrm{pH} 0.250 \mathrm{~mol} \mathrm{dm}^{-3}$ propanoic acid ($\mathrm{pKa}=4.87$).

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=10^{-\mathrm{pKa}} \\
& \mathrm{~K}_{\mathrm{a}}=10^{-4.87 \quad \mathrm{~K}_{\mathrm{a}}=1.35 \times 10^{-5}} \\
& {\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=\sqrt{\mathrm{K}_{\mathrm{a}} \times\left[\mathrm{HA}_{(\mathrm{aq})}\right]}} \\
& {\left[\mathrm{H}_{(\mathrm{aq})}^{+}\right]=\sqrt{1.35 \times 10^{-5} \times 0.250}} \\
& \hline \mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right] \\
& \mathrm{pH}=-\log _{10}\left(1.84 \times 10^{-3}\right)
\end{aligned}
$$

Example 2

Calculate the concentration of ethanoic acid with pH 4.97 $\left(\mathrm{Ka}=1.74 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}\right)$
$\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}$
$\left[\mathrm{H}^{+}\right]=10^{-4.97} \quad\left[\mathrm{H}^{+}\right]=1.07 \times 10^{-5}$
$\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]^{2}=\quad \mathrm{K}_{\mathrm{a}} \times\left[\mathrm{HA}_{(\mathrm{aq})}\right]$
$\left(1.07 \times 10^{-5}\right)^{2}=1.74 \times 10^{-5} \times\left[\mathrm{HA}_{(\text {(qq) }}\right]$

$$
\left[\mathrm{HA}_{(\mathrm{aq})}\right]=\frac{\left(1.07 \times 10^{-5}\right)^{2}}{1.74 \times 10^{-5}}=\frac{1.145 \times 10^{-10}}{1.74 \times 10^{-5}}=6.58 \times 10^{-6} \mathrm{~mol} \mathrm{dm}{ }^{-3}
$$

Example 3

Calculate the Ka value for phenyl ethanoic acid given that a $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ solution has a pH of 2.66.

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}} \\
& {\left[\mathrm{H}^{+}\right]=10^{-2.66} \quad\left[\mathrm{H}^{+}\right]=2.19 \times 10^{-3}} \\
& {\left[\mathrm{H}^{+}(\mathrm{aq})\right]^{2}=\mathrm{K}_{\mathrm{a}} \times\left[\mathrm{HA}_{(\mathrm{aq})}\right]} \\
& \left(2.19 \times 10^{-3}\right)^{2}=\mathrm{K}_{\mathrm{a}} \times 0.100
\end{aligned}
$$

$$
K_{a}=\frac{\left(2.19 \times 10^{-3}\right)^{2}}{0.100}=\frac{4.7961 \times 10^{-6}}{0.100}=4.79 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}
$$

Online Teaching and Learning Resources for Chemistry Students

ChemistryTuition.Net

