Online and Home Chemistry Tuition

Online, Brighton and Worthing

https://www.chemistrytuition.net/

Key Concepts for A Level
Chemistry

Checkup Quiz...Moles Part 6

1) Balance the following equations.
a) $\mathrm{Mg}+\mathrm{HNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2}$
b) $\mathrm{CuCl}_{2}+\mathrm{NaOH} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+\mathrm{NaCl}$
c) $\mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}$
d) $\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
2) Give balanced equations for the following reactions. Remember to work out the formulae first!
a) sodium + oxygen \rightarrow sodium oxide
b) aluminium + chlorine \rightarrow aluminium chloride
c) calcium + hydrochloric acid \rightarrow calcium chloride + hydrogen
d) ammonia + sulphuric acid \rightarrow ammonium sulphate

3) Calculate the mass of each of the following:
i) 0.100 moles of hydrogen gas
ii) 0.200 moles of sodium bromide
b) Calculate the amount of moles in each of the following:
i) 0.150 g of iron
ii) 1.23 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
4) a) How many moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are there in 98.1 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
b) How many moles of H^{+}ions does this contain?
c) How many moles of $\mathrm{SO}_{4}{ }^{2-}$ ions does this contain?

5) What volume of O_{2} is required to ignite 20.0 g of hydrogen in oxygen at RTP?

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

6) What mass of $\mathrm{Na}_{2} \mathrm{O}$ is produced when 2.50 g of sodium is burned in oxygen?

$$
4 \mathrm{Na}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}
$$

7) If $4 \mathrm{dm}^{3}$ of hydrogen sulphide is burned in $10 \mathrm{dm}^{3}$ of oxygen, what is the final volume of the mixture at RTP (give the volume of each gas at the end)?

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})
$$

Answers are coming up...

1) Balance the following equations.
a) $\mathrm{Mg}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2}$
b) $\mathrm{CuCl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+2 \mathrm{NaCl}$
c) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$
d) $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
2) Give balanced equations for the following reactions. Remember to work out the formulae first!
a) sodium + oxygen \rightarrow sodium oxide

$$
4 \mathrm{Na}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}
$$

b) aluminium + chlorine \rightarrow aluminium chloride

$$
2 \mathrm{Al}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{AlCl}_{3}
$$

c) calcium + hydrochloric acid \rightarrow calcium chloride + hydrogen $\mathrm{Ca}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2}$
d) ammonia + sulphuric acid \rightarrow ammonium sulphate $2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
3) Calculate the mass of each of the following:
i) 0.100 moles of hydrogen gas

Mass $=$ Moles \times Molar Mass $=0.100 \times 2=0.200$ grams
ii) 0.200 moles of sodium bromide

Mass $=$ Moles \times Molar Mass $=0.200 \times 103=20.6$ grams
b) Calculate the amount of moles in each of the following:
i) 0.150 g of iron

Moles $=$ Mass $/$ Molar Mass $=0.150 / 55.84=2.67$ moles
ii) 1.23 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}=1.23 / 142=0.00880$ moles

4)
a) How many moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are there in 98.1 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$?

Moles $=$ Mass $/$ Molar Mass $=98.1 / 98.1=1$ mole
b) How many moles of H^{+}ions does this contain?

2 moles
c) How many moles of $\mathrm{SO}_{4}{ }^{2-}$ ions does this contain?

1 mole

5) What volume of O_{2} is required to ignite 20.0 g of hydrogen in oxygen at RTP?

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

Moles of $\mathrm{H}_{2}=20.0 / 2=10$ moles
Moles of $\mathrm{O}_{2}=5$ moles

Volume of $\mathrm{O}_{2}=5 \times 24000=120,000 \mathrm{~cm}^{3}$

6) What mass of $\mathrm{Na}_{2} \mathrm{O}$ is produced when 2.50 g of sodium is burned in oxygen?

$$
4 \mathrm{Na}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}
$$

Moles of $\mathrm{Na}=2.5 / 23=0.109$ moles

Moles of $\mathrm{Na}_{2} \mathrm{O}=2.5 / 23=0.109 / 2=0.0543$ moles

Mass of $\mathrm{Na}_{2} \mathrm{O}=0.0543 \times 62=3.37$ grams

7) If $4 \mathrm{dm}^{3}$ of hydrogen sulphide is burned in $10 \mathrm{dm}^{3}$ of oxygen, what is the final volume of the mixture at RTP (give the volume of each gas at the end)?

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})
$$

$4 \mathrm{dm}^{3}$ of $\mathrm{H}_{2} \mathrm{~S}$ requires $\frac{4}{2} \times 3=6 \mathrm{dm}^{3}$ of O_{2}

$2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{SO}_{2}(\mathrm{~g})$
 $0 \mathrm{dm}^{3} \quad 4 \mathrm{dm}^{3} \quad 4 \mathrm{dm}^{3} \quad 4 \mathrm{dm}^{3}$

Total volume $=12 \mathrm{dm}^{3}$

Dr Simon Orchard

