

Key Concepts for A Level Chemistry

Chemistry Calculations Part 5 Gases in Equations

This resource may be downloaded for free at

https://www.chemistrytuition.net

Number of moles	=	Mass in grams Relative Atomic or Molecular Mass		
Volume of gas	=	Number of moles	X	24000
Number of moles	=	Volume of gas 24000		ChemistryTuition.Net

1) Iron reacts with excess steam as shown below. What volume of hydrogen, at RTP, is produced when 100 g of iron reacts with steam?

 $3 \operatorname{Fe}(s) + 4 \operatorname{H}_2O(g) \rightarrow \operatorname{Fe}_3O_4(s) + 4 \operatorname{H}_2(g)$

2) What volume of oxygen at RTP is required for the complete combustion of 1000 g of butene (C_4H_8)?

 $C_4H_8(g) + 6 O_2(g) \rightarrow 4 CO_2(g) + 4 H_2O(I)$

Moles of O_2 = 17.86 x 6 = 107 moles

Volume of O_2 = moles x 24000 = 107 x 24000 = **2,571,428 cm³**

= 2,570,000 cm³ to 3 sf

What volume of oxygen is required to burn the following gases, and what volume of carbon dioxide is produced at RTP?

1000 cm³ of methane $CH_4(g)$ 2 O₂(g) $CO_2(g)$ \rightarrow $2 H_2O(I)$ a) + + **2000** cm³ **1000 cm³** 1000 cm³ b) 20 cm³ of butene $C_4H_8(g)$ 6 O₂(g) 4 CO₂(g) $4 H_2O(I)$ \rightarrow + + 6 x 20 = 120 cm³ $4 \times 20 = 80 \text{ cm}^3$ 20 cm³

ChemistryTuition.Net

3) 100 cm³ of methane was reacted with 500 cm³ of oxygen. What is the total volume of all gases at the end, and indicate how much there is of each gas at RTP?

Unreacted $O_2 = 500 \text{ cm}^3 - 200 \text{ cm}^3 = 300 \text{ cm}^3$

Dr Simon Orchard