Online and Home Chemistry Tuition

Online, Brighton and Worthing

https://www.chemistrytuition.net/

Key Concepts for A Level
Chemistry

Chemistry Calculations Part 5 Gases in Equations

This resource may be downloaded for free at https://www.chemistrytuition.net

Number of
 Mass in grams moles
 Relative Atomic or Molecular Mass

Mass in $=$| Number of |
| :--- |
| moles |

X Relative Atomic or Molecular Mass grams

Volume of gas $=\underset{\text { moles }}{\begin{array}{l}\text { Number of } \\ \text { moles }\end{array} \mathrm{X} \quad 24000}$
$\underset{\text { moles }}{\text { Number of }}=\frac{\text { Volume of gas }}{24000}$

1) Iron reacts with excess steam as shown below. What volume of hydrogen, at RTP, is produced when 100 g of iron reacts with steam?

$$
3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

Volume of $\mathrm{H}_{2}=$ moles $\times 24000=2.39 \times 24000=57,348 \mathrm{~cm}^{\mathbf{3}}$

$$
=57,300 \mathrm{~cm}^{3} \text { to } 3 \mathrm{sf}
$$

2) What volume of oxygen at RTP is required for the complete combustion of 1000 g of butene $\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)$?

$$
\mathrm{C}_{4} \mathrm{H}_{8}(\mathrm{~g})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

$$
\begin{aligned}
& \text { Moles of Iron }=\frac{\text { Mass }}{\text { Molar Mass }}=\frac{1000}{56}=17.86 \text { moles } \\
& \text { Moles of } \mathrm{O}_{2}=17.86 \times 6 \quad=107 \text { moles }
\end{aligned}
$$

Volume of $\mathrm{O}_{2}=\operatorname{moles} \times 24000=107 \times 24000=\mathbf{2 , 5 7 1 , 4 2 8} \mathbf{c m}^{\mathbf{3}}$

What volume of oxygen is required to burn the following gases, and what volume of carbon dioxide is produced at RTP?
a) $1000 \mathrm{~cm}^{3}$ of methane

$$
\begin{array}{cccc}
\mathrm{CH}_{4}(\mathrm{~g}) & +2 \mathrm{O}_{2}(\mathrm{~g}) & \rightarrow & \mathrm{CO}_{2}(\mathrm{~g}) \\
1000 \mathrm{~cm}^{3} & 2000 \mathrm{~cm}^{3} & & 1000 \mathrm{~cm}^{3}
\end{array}
$$

$$
+\quad 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

b) $20 \mathrm{~cm}^{3}$ of butene
$\mathrm{C}_{4} \mathrm{H}_{8}(\mathrm{~g})$ $+$

$$
\begin{gathered}
6 \mathrm{O}_{2}(\mathrm{~g}) \\
6 \times 20=120 \mathrm{~cm}^{3}
\end{gathered}
$$

$$
\rightarrow
$$

$4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$4 \times 20=80 \mathrm{~cm}^{3}$
3) $100 \mathrm{~cm}^{3}$ of methane was reacted with $500 \mathrm{~cm}^{3}$ of oxygen. What is the total volume of all gases at the end, and indicate how much there is of each gas at RTP?
$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \quad \rightarrow \quad \mathrm{CO}_{2(\mathrm{~g})}+\quad 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
$100 \mathrm{~cm}^{3}$

$$
2 \times 100 \mathrm{~cm}^{3}
$$

$100 \mathrm{~cm}^{3}$ $=200 \mathrm{~cm}^{3}$

Unreacted $\mathrm{O}_{2}=500 \mathrm{~cm}^{3}-200 \mathrm{~cm}^{3}=300 \mathrm{~cm}^{3}$

Dr Simon Orchard

