A2 Physical Chemistry

Calculating the pH of Strong Bases

Download slides and other resources at ChemistryTuition.Net

K_{w} may be used to calculate the pH of alkalis

$$
\mathrm{K}_{\mathrm{w}}=\quad\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

K_{w} may be used to calculate the pH of alkalis

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \quad \mathrm{K}_{\mathrm{w}}=1 \times 10^{-14} \text { at } 298 \mathrm{~K}
$$

K_{w} may be used to calculate the pH of alkalis

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \quad \mathrm{K}_{\mathrm{w}}=1 \times 10^{-14} \text { at } 298 \mathrm{~K}
$$

$1 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$

K_{w} may be used to calculate the pH of alkalis

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \quad \mathrm{K}_{\mathrm{w}}=1 \times 10^{-14} \text { at } 298 \mathrm{~K}
$$

$1 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
This will be known
from the
concentration of the
alkali

K_{w} may be used to calculate the pH of alkalis

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \quad \mathrm{K}_{\mathrm{w}}=1 \times 10^{-14} \text { at } 298 \mathrm{~K}
$$

Then the pH may be calculated using $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$

Example 1 - pH of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$?

$1 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$

Example 1 - pH of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$?

$1 \times 10^{-14}=\left[\mathrm{H}^{+}\right](0.200)$

Example 1 - pH of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$?

$$
\begin{gathered}
1 \times 10^{-14}=\left[\mathrm{H}^{+}\right](0.200) \\
{\left[\mathrm{H}^{+}\right]=5 \times 10^{-14}}
\end{gathered}
$$

Example $1-\mathrm{pH}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$?

$$
\begin{aligned}
& 1 \times 10^{-14}=\left[\mathrm{H}^{+}\right](0.200) \\
& {\left[\mathrm{H}^{+}\right]=5 \times 10^{-14}} \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
\end{aligned}
$$

Example $1-\mathrm{pH}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$?

$$
\begin{aligned}
& 1 \times 10^{-14}=\left[\mathrm{H}^{+}\right](0.200) \\
& {\left[\mathrm{H}^{+}\right]=5 \times 10^{-14}} \\
& \mathrm{pH}=-\log \left(5 \times 10^{-14}\right)
\end{aligned}
$$

Example $1-\mathrm{pH}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$?

$$
\begin{aligned}
& 1 \times 10^{-14}=\left[\mathrm{H}^{+}\right](0.200) \\
& {\left[\mathrm{H}^{+}\right]=5 \times 10^{-14}} \\
& \mathrm{pH}=-\log \left(5 \times 10^{-14}\right) \\
& \mathrm{pH}=13.30
\end{aligned}
$$

Example 2 - pH of $0.0500 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Sr}(\mathrm{OH})_{2}$

Example 2 - pH of $0.0500 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Sr}(\mathrm{OH})_{2}$
$1 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$

Example 2 - pH of $0.0500 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Sr}(\mathrm{OH})_{2}$

$1 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \quad\left[\mathrm{OH}^{-}\right]=2 \times 0.0500=0.100 \mathrm{~mol} \mathrm{dm}^{-3}$

Example 2 - pH of $0.0500 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Sr}(\mathrm{OH})_{2}$

$1 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \quad\left[\mathrm{OH}^{-}\right]=2 \times 0.0500=0.100 \mathrm{~mol} \mathrm{dm}^{-3}$
$1 \times 10^{-14}=\left[\mathrm{H}^{+}\right](0.100)$

Example 2 - pH of $0.0500 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Sr}(\mathrm{OH})_{2}$

$1 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
 $\left[\mathrm{OH}^{-}\right]=2 \times 0.0500=0.100 \mathrm{~mol} \mathrm{dm}^{-3}$

$1 \times 10^{-14}=\left[\mathrm{H}^{+}\right](0.100)$

$$
\left[\mathrm{H}^{+}\right]=1.00 \times 10^{-13}
$$

Example 2 - pH of $0.0500 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Sr}(\mathrm{OH})_{2}$

$$
\begin{aligned}
& 1 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
& 1 \times 10^{-14}=\left[\mathrm{H}^{+}\right](0.100) \\
& {\left[\mathrm{H}^{+}\right]=1.00 \times 10^{-13}} \\
& \mathrm{pH}=-\log \left(1 \times 10^{-13}\right)
\end{aligned}
$$

$$
\left[\mathrm{OH}^{-}\right]=2 \times 0.0500=0.100 \mathrm{~mol} \mathrm{dm}^{-3}
$$

Example 2 - pH of $0.0500 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Sr}(\mathrm{OH})_{2}$

$$
\begin{aligned}
& 1 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
& 1 \times 10^{-14}=\left[\mathrm{H}^{+}\right](0.100) \\
& {\left[\mathrm{H}^{+}\right]=1.00 \times 10^{-13}} \\
& \mathrm{pH}=-\log \left(1 \times 10^{-13}\right) \\
& \mathrm{pH}=13.00
\end{aligned}
$$

$$
\left[\mathrm{OH}^{-}\right]=2 \times 0.0500=0.100 \mathrm{~mol} \mathrm{dm}^{-3}
$$

Example 3 - Calculate the pH of the solution formed when $50 \mathrm{~cm}^{3}$ of water is added to $100 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$.

Example 3 - Calculate the pH of the solution formed when $50 \mathrm{~cm}^{3}$ of water is added to $100 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$.

Original $\left[\mathrm{OH}^{-}\right]=0.200$

Example 3 - Calculate the pH of the solution formed when $50 \mathrm{~cm}^{3}$ of water is added to $100 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$.

Original $\left[\mathrm{OH}^{-}\right]=0.200$
Diluted $\left[\mathrm{OH}^{-}\right]=0.200 \times$ original vol
diluted vol

Example 3 - Calculate the pH of the solution formed when $50 \mathrm{~cm}^{3}$ of water is added to $100 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$.

Original $\left[\mathrm{OH}^{-}\right]=0.200$
Diluted $\left[\mathrm{OH}^{-}\right]=0.200 \times \frac{100}{150}$

Example 3 - Calculate the pH of the solution formed when $50 \mathrm{~cm}^{3}$ of water is added to $100 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$.

Original $\left[\mathrm{OH}^{-}\right]=0.200$
Diluted $\left[\mathrm{OH}^{-}\right]=0.200 \times \frac{100}{150}$
Diluted $\left[\mathrm{OH}^{-}\right]=0.133$

Example 3 - Calculate the pH of the solution formed when $50 \mathrm{~cm}^{3}$ of water is added to $100 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$.

Original $\left[\mathrm{OH}^{-}\right]=0.200$
Diluted $\left[\mathrm{OH}^{-}\right]=0.200 \times \frac{100}{150}$
Diluted $\left[\mathrm{OH}^{-}\right]=0.133$
$1 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$

Example 3 - Calculate the pH of the solution formed when $50 \mathrm{~cm}^{3}$ of water is added to $100 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$.

Original $\left[\mathrm{OH}^{-}\right]=0.200$
Diluted $\left[\mathrm{OH}^{-}\right]=0.200 \times \frac{100}{150}$
Diluted $\left[\mathrm{OH}^{-}\right]=0.133$

$$
1 \times 10^{-14}=\left[\mathrm{H}^{+}\right](0.133)
$$

Example 3 - Calculate the pH of the solution formed when $50 \mathrm{~cm}^{3}$ of water is added to $100 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$.

Original $\left[\mathrm{OH}^{-}\right]=0.200$
Diluted $\left[\mathrm{OH}^{-}\right]=0.200 \times \frac{100}{150}$
Diluted $\left[\mathrm{OH}^{-}\right]=0.133$

$$
\begin{aligned}
& 1 \times 10^{-14}=\left[\mathrm{H}^{+}\right](0.133) \\
& {\left[\mathrm{H}^{+}\right]=7.50 \times 10^{-14}}
\end{aligned}
$$

Example 3 - Calculate the pH of the solution formed when $50 \mathrm{~cm}^{3}$ of water is added to $100 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$.

Original $\left[\mathrm{OH}^{-}\right]=0.200$
Diluted $\left[\mathrm{OH}^{-}\right]=0.200 \times \frac{100}{150}$
Diluted $\left[\mathrm{OH}^{-}\right]=0.133$

$$
\begin{aligned}
& 1 \times 10^{-14}=\left[\mathrm{H}^{+}\right](0.133) \\
& {\left[\mathrm{H}^{+}\right]=7.50 \times 10^{-14}} \\
& \mathrm{pH}=-\log \left(7.50 \times 10^{-14}\right)
\end{aligned}
$$

Example 3 - Calculate the pH of the solution formed when $50 \mathrm{~cm}^{3}$ of water is added to $100 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$.

Original $\left[\mathrm{OH}^{-}\right]=0.200$
Diluted $\left[\mathrm{OH}^{-}\right]=0.200 \times \frac{100}{150}$
Diluted $\left[\mathrm{OH}^{-}\right]=0.133$

$$
\begin{aligned}
& 1 \times 10^{-14}=\left[\mathrm{H}^{+}\right](0.133) \\
& {\left[\mathrm{H}^{+}\right]=7.50 \times 10^{-14}} \\
& \mathrm{pH}=13.12
\end{aligned}
$$

Online Teaching and Learning Resources for Chemistry Students

ChemistryTuition.Net

