Module 2: Foundations in Chemistry

2.1 Atoms and Reactions

2.1.3 Amount of Substance

The Mole (symbol = mol)

The mole is used as the unit for the amount of a substance.
A mole of substance contains the Avogadro constant, N_{A}, of particles. N_{A} is approximately $6.02 \times 10^{23} \mathrm{~mol}^{-1}$.
N_{A} is defined as the number of particles per mole.
Molar mass is the mass per mole of a substance, in grams mol${ }^{-1}$.
Molar gas volume is the gas volume per mole. $\mathrm{In}_{\mathrm{dm}}{ }^{3} \mathrm{~mol}^{-1}$
Empirical formula of a compound shows the simplest whole number ratio of the atoms of each element present.

Molecular formula shows the actual number of atoms of each element present in a molecule of the compound.

Empirical and Molecular Formulae

Calculating empirical and molecular formulae

e.g. A compound contains 82.76% carbon and 17.24% hydrogen. Find its empirical formula.

$$
\begin{array}{cc}
\text { Moles C 82.76/12.0 : } & \text { H 17.24/1.0 } \\
=6.897 \quad: & 17.24
\end{array}
$$

Divide by the smallest number of moles, 6.897
$\begin{array}{lll}=1 & : & 2.4996 \\ =2 & : & 5\end{array}$
Empirical formula is $\mathbf{C}_{2} \mathbf{H}_{5}$
(This calculation can also be done if you are given the quantities of elements in grams.)
If the compound has molar mass 58 , find its molecular formula.
Molar mass of EF = 29
Molar mass of compound $=2 \times$ molar mass of $E F$
Molecular formula is $\mathbf{C}_{\mathbf{4}} \mathbf{H}_{\mathbf{1 0}}$

Anhydrous and Hydrated Salts

Anhydrous salts are the compounds left after removing the water of crystallisation from a hydrated salt, e.g. Hydrated copper (II) sulphate is blue. Heating drives off the water of crystallisation as steam leaving a white solid, anhydrous copper(II) sulphate.

$$
\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CuSO}_{4}+5 \mathrm{H}_{2} \mathrm{O}
$$

Calculating the formula of a hydrated salt:

0.942 g of MgSO_{4} gave 0.461 g of residue after heating.

MgSO_{4}	$:$	$\mathrm{H}_{2} \mathrm{O}$	
0.461	$:$	$0.481(0.942-0.461)$	
$0.461 / 120.4$	$:$	$0.481 / 18$	
3.83×10^{-3}	$:$	0.0267	
1	$:$	7	therefore $\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$

The Ideal Gas Equation

$\mathbf{p V}=\mathbf{n R T}$
where
$\mathrm{p}=$ pressure in pascals (Pa)
$\mathrm{V}=$ volume in $\mathrm{m}^{3}\left(\right.$ note $\left.1 \mathrm{~m}^{3}=1000 \mathrm{dm}^{3}=1,000,000 \mathrm{~cm}^{3}\right)$
$\mathrm{n}=$ number of moles
$\mathrm{T}=$ Temperature in Kelvin (K)
$\mathrm{R}=$ gas constant (you will be given this, $8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)

Mole calculations

A) For masses: moles = mass / molar mass
B) For volumes of gases: moles $=$ volume $\left(\mathrm{dm}^{3}\right) / 24.0$ at RTP
C) For solutions: moles $=$ volume $\left(\mathbf{d m}^{3}\right) \mathbf{x}$ concentration $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$

2.1 Atoms and Reactions

Concentrations may be in $\mathrm{mol} \mathrm{dm}^{-3}$ or $\mathrm{g} \mathrm{dm}^{-3}$. To convert from one to the other use A) above.
Concentration of $2 \mathrm{~mol} \mathrm{dm}^{-3}$ means 2 moles of solid dissolved in $1 \mathrm{dm}^{3}$ of solution (not water).

Calculating quantities from equations:

1) Calculate moles of the known chemical using one of the three formulae above.
2) Calculate moles of the unknown chemical from the balanced equation.
3) Calculate mass, volume or concentration of unknown chemical using A), B), or C) above.

You need to be able to carry out structured titration calculations (from 2.1.4 Acids)
The terms concentrated and dilute are used as qualitative descriptions for the concentration of a solution.

Percentage Yields and Atom Economy

$$
\% \text { yield }=\underset{\text { theoretical mass }}{\text { actual mass }} \mathbf{x} 100 \quad \text { or } \quad \underset{\text { theoretical moles }}{\text { actual moles }} \mathbf{x} 100
$$

Atom Economy $=$| molecular mass of desired products | \mathbf{x} | $\mathbf{1 0 0}$ |
| :--- | :--- | :--- |

Addition reactions have an atom economy of 100%, whereas substitution reactions are less efficient.

Chemical processes with a high atom economy produce fewer waste materials.
A reaction may have a high percentage yield but a low atom economy.

