

Titration Calculations – Worked Examples

Download slides at ChemistryTuition.Net

Titration Questions

1) 25.0 cm³ of 0.020 mol/dm³ sulphuric acid neutralises 18.6 cm³ of barium hydroxide solution. Find the concentration of the barium hydroxide solution in mol/dm³.

 $H_2SO_4 + Ba(OH)_2 \rightarrow BaSO_4 + 2 H_2O$

2) 25.0 cm³ of a solution of sodium hydroxide required 18.8 cm³ of 0.0500 mol/dm³ H₂SO₄. Find the concentration of the sodium hydroxide solution in mol/dm³. H₂SO₄ + 2NaOH \rightarrow Na₂SO₄ + 2 H₂O

Titration Questions

3) Calculate the volume of 0.05 mol/dm³ KOH is required to neutralise 25.0 cm³ of 0.0150 mol/dm³ HNO₃.

 $HNO_3 + KOH \rightarrow KNO_3 + H_2O$

4) A 250 cm³ solution of NaOH was prepared. 25.0 cm³ of this solution required 28.2 cm³ of 0.100 mol/dm³ HCl for neutralisation. Calculate what mass of NaOH was dissolved to make up the original 250 cm³ solution.

```
HCI + NaOH \rightarrow NaCI + H_2O
```

5) What volume of 5.00 mol/dm³ HCl is required to neutralise 200 g of CaCO₃?

 $2 \text{ HCl} + \text{CaCO}_3 \rightarrow \text{CaCl}_2 + \text{H}_2\text{O} + \text{CO}_2$

Question 1 Solution

25.0 cm³ of 0.020 mol/dm³ sulphuric acid neutralises 18.6 cm³ of barium hydroxide solution. Find the concentration of the barium hydroxide solution in mol/dm³.

 $H_2SO_4 + Ba(OH)_2 \rightarrow BaSO_4 + 2 H_2O$

Question 2 Solution

25.0 cm³ of a solution of sodium hydroxide required 18.8 cm³ of 0.0500 mol/dm³ H_2SO_4 . Find the concentration of the sodium hydroxide solution in mol/dm³.

 $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$

Moles of $H_2SO_4 =$	conc x vol (dr	³)	=	0.0500	x 0.018	88 = 0.00094
1H ₂ SO ₄ : 2NaOH	Moles of NaO	H = 2 x (0.00094	- = 0.001	88	
Concentration = of NaOH	Moles Volume	=	0.0018 0.025	8	=	0.0752 mol/dm ³

Question 3 Solution

Calculate the volume in cm³ of 0.05 mol/dm³ KOH required to neutralise 25.0 cm³ of 0.0150 mol/dm³ HNO₃.

 $HNO_3 + KOH \rightarrow KNO_3 + H_2O$

Moles of $HNO_3 =$ conc x vol (dm³) = $0.0150 \times 0.025 = 0.000375$ $1HNO_3 : 1KOH$ Moles of KOH = 0.000375Volume of KOH =Moles= 0.000375 $\frac{Moles}{Conc}$ = 0.000375= $0.0075 \text{ dm}^3 = 7.5 \text{ cm}^3$

Question 4 Solution

A 250 cm³ solution of NaOH was prepared. 25.0 cm³ of this solution required 28.2 cm³ of 0.100 mol/dm³ HCl for neutralisation. Calculate what mass of NaOH was dissolved to make up the original 250 cm³ solution.

<u>HCl + NaOH \rightarrow NaCl + H₂O</u>

```
Moles of HCl = \operatorname{conc} x \operatorname{vol} (\operatorname{dm}^3) = 0.100 \times 0.0282 = 0.00282
```

1HCl : 1NaOH Moles of NaOH in 25.0 cm³ = 0.00282

```
Moles of NaOH in 250 cm<sup>3</sup> = 0.00282 \times 10 = 0.0282
```

```
Mass of NaOH = moles x molar mass = 0.0282 \times 40 = 1.128 \text{ g}
```

Question 5 Solution

What volume in cm³ of 5.00 mol/dm³ HCl is required to neutralise 200 g of CaCO₃? 2 HCl + CaCO₃ \rightarrow CaCl₂ + H₂O + CO₂

