

These slides may be downloaded at https://www.chemistrytuition.net/

Concentration of Solutions

Can be rearranged to give:

Number of_	Concentration	Volume in
moles	in mol/dm ³ X	dm ³

Questions

1. Calculate the number of moles in 5 cm³ of 0.01 mol/dm³ NaOH

2. Calculate the concentration of a solution containing 1.05 g of NaOH dissolved in 500 $\rm cm^3$ of solution

3. Calculate the volume in cm^3 of 0.0100 mol/dm³ HCl_(aq) that contains 1.00 x 10⁻⁵ moles.

4. Fizzy drinks are made by dissolving carbon dioxide in water. Calculate to volume of CO₂ in cm³ at RTP required to dissolve in 300 cm³ of solution to give a concentration of 2.5 mol/dm³.

Answers coming

up...

1. Calculate the number of moles in 5 cm³ of 0.01 mol/dm³ NaOH

Number of
moles \equiv Concentration χ Volume in
dm³

Number of moles = $0.01 \times \frac{5}{1000} = 5 \times 10^{-5}$ moles

2. Calculate the concentration of a solution containing 1.05 g of NaOH dissolved in 500 cm³ of solution

3. Calculate the volume in cm³ of 0.0100 mol/dm³ HCl_(aq) that contains 1.00 x 10^{-5} moles.

4. Fizzy drinks are made by dissolving carbon dioxide in water. Calculate to volume of CO_2 in dm³ at RTP required to dissolve in 300 cm³ of solution to give a concentration of 2.5 mol/dm³.

Number of \pm 2.5 X 300 = 0.750 moles moles 1000

Volume of gas = Moles X 24000 = $18,000 \text{ cm}^3$

= 18 dm³

Professional 1-1 Chemistry Tuition

www.ChemistryTuition.Net

Online Brighton Worthing

Dr Simon Orchard