

These slides may be downloaded at https://www.chemistrytuition.net/

Concentration of Solutions

Can be rearranged to give:

$$
\begin{aligned}
& \text { Number of } \\
& \text { moles }
\end{aligned}=\begin{gathered}
\text { Concentration } \\
\text { in } \mathrm{mol} / \mathrm{dm}^{3}
\end{gathered} \times \begin{aligned}
& \text { Volume in } \\
& \mathrm{dm}^{3}
\end{aligned}
$$

Questions

1. Calculate the number of moles in $5 \mathrm{~cm}^{3}$ of $0.01 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{NaOH}$
2. Calculate the concentration of a solution containing 1.05 g of NaOH dissolved in $500 \mathrm{~cm}^{3}$ of solution
3. Calculate the volume in cm^{3} of $0.0100 \mathrm{~mol} / \mathrm{dm}^{3}$ $\mathrm{HCl}_{(\mathrm{aq})}$ that contains 1.00×10^{-5} moles.
4. Fizzy drinks are made by dissolving carbon dioxide in water. Calculate to volume of CO_{2} in cm^{3} at RTP required to dissolve in $300 \mathrm{~cm}^{3}$ of solution to give a concentration of $2.5 \mathrm{~mol} / \mathrm{dm}^{3}$.

Answers coming up...

1. Calculate the number of moles in $5 \mathrm{~cm}^{3}$ of $0.01 \mathrm{~mol} / \mathrm{dm}^{3}$ NaOH

$$
\begin{aligned}
& \begin{array}{l}
\text { Number of } \\
\text { moles }
\end{array} \\
& \begin{array}{c}
\text { Concentration } \\
\text { in } \mathrm{mol} / \mathrm{dm}^{3}
\end{array}
\end{aligned} \begin{aligned}
& \text { Volume in } \\
& \mathrm{dm}^{3}
\end{aligned}
$$

$$
\text { Number of moles }=0.01 \times \frac{5}{1000}=5 \times 10^{-5} \text { moles }
$$

2. Calculate the concentration of a solution containing 1.05 g of NaOH dissolved in $500 \mathrm{~cm}^{3}$ of solution

Moles of
NaOH

$$
\text { Volume }=500 \mathrm{~cm}^{3}=\frac{500}{1000} \mathrm{dm}^{3}=0.500 \mathrm{dm}^{3}
$$

Concentration
in $\mathrm{mol} / \mathrm{dm}^{3}$
:---:
Volume in dm^{3}

3. Calculate the volume in cm^{3} of $0.0100 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{HCl}_{(\mathrm{aq})}$ that contains 1.00 x 10^{-5} moles.

Number of moles dissolved
Volume in $\mathrm{dm}^{3}=$
Concentration in mol/dm ${ }^{3}$
Volume in $\mathrm{dm}^{3}=\frac{1.00 \times 10^{-5}}{0.0100}=0.001 \mathrm{dm}^{3}$

Volume in $\mathrm{cm}^{3}=0.001 \times 1000=1.00 \mathrm{~cm}^{3}$
4. Fizzy drinks are made by dissolving carbon dioxide in water. Calculate to volume of CO_{2} in dm^{3} at RTP required to dissolve in $300 \mathrm{~cm}^{3}$ of solution to give a concentration of $2.5 \mathrm{~mol} / \mathrm{dm}^{3}$.

Number of $=$ Concentration x Volume in moles $=$ in mol/dm ${ }^{3} \mathrm{dm}^{3}$

$$
\begin{aligned}
& \text { Number of }=2.5 \times \frac{300}{1000}=0.750 \text { moles } \\
& \text { moles }
\end{aligned}
$$

Volume of gas $=$ Moles $X 24000=18,000 \mathrm{~cm}^{3}$

$$
=18 \mathrm{dm}^{3}
$$

Professional 1-1 Chemistry Tuition

www.ChemistryTuition.Net

Online
Brighton
Dr Simon Orchard
Worthing

