

Back Titrations - Worked Examples

Download slides at ChemistryTuition.Net

Worked Example 1

1) An impure sample of calcium hydroxide of mass 0.978 g was allowed to react with $125 \mathrm{~cm}^{3}$ of $0.150 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid. When the excess acid was titrated against $0.500 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium hydroxide, $10.90 \mathrm{~cm}^{3}$ of sodium hydroxide solution was required. Calculate the percentage purity of the sample of calcium hydroxide.

Worked Example 1

An impure sample of calcium hydroxide of mass 0.978 g was allowed to react with $125 \mathrm{~cm}^{3}$ of $0.150 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid. When the excess acid was titrated against $0.500 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium hydroxide, $10.90 \mathrm{~cm}^{3}$ of sodium hydroxide solution was required. Calculate the percentage purity of the sample of calcium hydroxide.

Moles of $\mathrm{HCl}=0.150 \times 0.125=0.01875$ moles

Worked Example 1

1) An impure sample of calcium hydroxide of mass 0.978 g was allowed to react with $125 \mathrm{~cm}^{3}$ of $0.150 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid. When the excess acid was titrated against $0.500 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium hydroxide, $10.90 \mathrm{~cm}^{3}$ of sodium hydroxide solution was required. Calculate the percentage purity of the sample of calcium hydroxide.

Moles of $\mathrm{HCl}=0.150 \times 0.125=0.01875$ moles

Moles of $\mathrm{NaOH}=0.500 \times 0.01090=0.00545$ moles

$$
\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

Moles of unreacted $\mathrm{HCl}=0.00545$ moles
Moles of reacted $\mathrm{HCl}=0.01875-0.00545=0.0133$ moles $\quad \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Moles of $\mathrm{Ca}(\mathrm{OH})_{2}=0.0133 / 2=0.00665$

$$
\% \text { purity }=\frac{0.4928}{0.978} \times 100=50.4 \%
$$

Worked Example 2

A 5.20 g sample containing ammonium chloride was added to $75.0 \mathrm{~cm}^{3}$ of $0.75 \mathrm{~mol} / \mathrm{dm}^{3}$ $\mathrm{NaOH}_{(a \mathrm{aq})}$. This was then heated until all the ammonium chloride had reacted with the NaOH .
$25.0 \mathrm{~cm}^{3}$ of the resulting solution was added to a conical flask using a pipette and titrated against $0.500 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$. Consistent titres of $22.50 \mathrm{~cm}^{3}$ and $22.60 \mathrm{~cm}^{3}$ were obtained.

Worked Example 2

A sample containing ammonium sulphate was added to $75.0 \mathrm{~cm}^{3}$ of $0.75 \mathrm{~mol} / \mathrm{dm}^{3}$ $\mathrm{NaOH}_{(\text {(aq) })}$. This was then heated until all the ammonium chloride had reacted with the NaOH .
$25.0 \mathrm{~cm}^{3}$ of the resulting solution was added to a conical flask using a pipette and titrated against $0.500 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{HCl}_{(\mathrm{aq})}$. Consistent titres of $22.50 \mathrm{~cm}^{3}$ and $22.60 \mathrm{~cm}^{3}$ were obtained.

Original moles of NaOH added $=0.75 \times 0.075=0.05625 \mathrm{moles}$

Worked Example 2

A sample containing ammonium sulphate was added to $75.0 \mathrm{~cm}^{3}$ of $0.75 \mathrm{~mol} / \mathrm{dm}^{3}$ $\mathrm{NaOH}_{\text {(aa). }}$. This was then heated until all the ammonium chloride had reacted with the NaOH .
$25.0 \mathrm{~cm}^{3}$ of the resulting solution was added to a conical flask using a pipette and titrated against $0.500 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{HCl}_{(\mathrm{aq})}$. Consistent titres of $22.50 \mathrm{~cm}^{3}$ and $22.60 \mathrm{~cm}^{3}$ were obtained.
Original moles of NaOH added $=0.75 \times 0.075=0.05625$ moles
Moles of $\mathrm{HCl}=0.500 \times 0.02255=0.011275$ moles
$\mathrm{HCl}_{(\mathrm{aq)}}+\mathrm{NaOH}_{(\mathrm{aq)}} \rightarrow \mathrm{NaCl}_{(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
Moles of NaOH in $25.0 \mathrm{~cm}^{3}=0.011275$ moles
Moles of NaOH in $75.0 \mathrm{~cm}^{3}=0.011275 \times 75.0=0.033825$ moles 25.0

A sample containing ammonium sulphate was added to $75.0 \mathrm{~cm}^{3}$ of $0.75 \mathrm{~mol} / \mathrm{m}^{3}$ $\mathrm{NaOH}_{(\mathrm{aq})}$. This was then heated until all the ammonia had reacted with the NaOH . $25.0 \mathrm{~cm}^{3}$ of the resulting solution was added to a conical flask using a pipette and titrated against $0.500 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{HCl}_{(\mathrm{aq})}$. Consistent titres of $22.50 \mathrm{~cm}^{3}$ and $22.60 \mathrm{~cm}^{3}$ were obtained.

Original moles of NaOH added $=0.05625$ moles

Moles of NaOH remaining $=0.033825$ moles
Moles of NaOH that reacted $=0.05625-0.033825=0.022425$
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow 2 \mathrm{NH}_{3}+\mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
Moles of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ that reacted $=0.022425 / 2=0.0112125$
Mass of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ that reacted $=0.0112125 \times 132.2=\underline{\mathbf{1 . 4 8} \mathbf{g}}$

Worked Example 3

1) A sample containing copper and zinc powders in a beaker was mixed with $150 \mathrm{~cm}^{3} 0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ $\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq)}}$. The zinc reacted with the acid to produce zinc sulphate solution and hydrogen gas.
${ }^{2)}$ The solution was filtered into a $250 \mathrm{~cm}^{3}$ volumetric flask, the beaker and filter paper washed through with distilled water into the volumetric flask.
$25.0 \mathrm{~cm}^{3}$ of this solution was titrated with $0.75 \mathrm{~mol}^{2} / \mathrm{dm}^{3} \mathrm{NaOH}_{(\mathrm{aq})}$ and the final titre found to be $15.25 \mathrm{~cm}^{3}$. How much zinc was in the sample?

Worked Example 3

${ }^{\text {1) }}$ A sample containing copper and zinc powders in a beaker was mixed with $150 \mathrm{~cm}^{3} 0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ $\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq)}}$. The zinc reacted with the acid to produce zinc sulphate solution and hydrogen gas. The solution was filtered into a $250 \mathrm{~cm}^{3}$ volumetric flask, the beaker and filter paper washed through with distilled water into the volumetric flask.
$25.0 \mathrm{~cm}^{3}$ of this solution was titrated with $0.75 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{NaOH}_{(\mathrm{aq})}$ and the final titre found to be $15.25 \mathrm{~cm}^{3}$. How much zinc was in the sample?

Moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ added $=0.100 \times 0.150=0.015$ moles

Worked Example 3

1) A sample containing copper and zinc powders in a beaker was mixed with $100 \mathrm{~cm}^{3} 0.750 \mathrm{~mol} / \mathrm{dm}^{3}$ $\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}$. The zinc reacted with the acid to produce zinc sulphate solution and hydrogen gas. The solution was filtered into a $250 \mathrm{~cm}^{3}$ volumetric flask, the beaker and filter paper washed through with distilled water into the volumetric flask.
$25.0 \mathrm{~cm}^{3}$ of this solution was titrated with $0.100 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{NaOH}_{(\mathrm{aq})}$ and the final titre found to be $7.25 \mathrm{~cm}^{3}$. How much zinc was in the sample?

Moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ added $=0.750 \times 0.100=0.075$ moles

$$
\text { Moles of } \mathrm{NaOH}=0.100 \times 0.00725=0.000725 \text { moles } \quad \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

Moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ remaining in $25.0 \mathrm{~cm}^{3}=0.000725 / 2=0.0003625$ moles
Moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ remaining in $250 \mathrm{~cm}^{3}=0.003625$ moles
Moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ that reacted $=0.075-0.003625=0.071375$ moles

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Zn} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2}
$$

Moles of $\mathrm{Zn}=0.071375$ moles \quad Mass of $\mathrm{Zn}=0.071375 \times 65.38=4.67 \mathrm{~g}$

