Professional 1-1 Online Worthing Brighton

www.ChemistryTuition.Net Dr Simon Orchard

Hybridisation of Atomic Orbitals Part 3 - sp hybrids

These slides may be downloaded at <u>https://www.chemistrytuition.net/</u>

Hybridisation of Orbitals

Carbon's electronic structure is 1s²2s²2p²

An electron in 2s is promoted to the empty 2p orbital

How does carbon form triple bonds e.g. in ethyne H-C≡C-H?

Formation of sp hvbrid orbitals to form single bonds

Both carbon atoms have two sp hybrid orbitals

One sp hybrid orbital on each carbon overlap to form a sigma bond

The other sp hybrid orbital on each carbon overlaps with a 1s orbital on the H atom to form another sigma bond

This completes the sigma framework.

However, the p_z and p_y orbitals remain unbonded.

However, the p_z and p_y orbitals remain unbonded.

The two p_v orbitals can overlap to form a pi bond.

And the two p_z orbitals can overlap to form a pi bond.

p_z orbitals overlapping to form a pi bond.

p_v orbitals overlapping to form a pi bond.

This explains the linear geometry around each carbon atom and how the C≡C triple bond is formed.

Professional 1-1 Chemistry Tuition

www.ChemistryTuition.Net

Online Brighton Worthing

Dr Simon Orchard